
Mechanisms for flow-induced

vibration of interfering bluff

bodies

by

Gustavo R. S. Assi

Department of Aeronautics

Imperial College London

This thesis is submitted for the degree of

Doctor of Philosophy of the University of London

September 2009



I hereby declare that this thesis is my own work and effort and

that it has not been submitted anywhere for any award. Where

other sources of information have been used, they have been

acknowledged.

Gustavo R.S. Assi



Abstract

The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem

arrangement is investigated by experiments. A typical WIV response is characterised

by a build up of amplitude persisting to high reduced velocities; this is different from

a typical vortex-induced vibrations (VIV) response that occurs in a limited resonance

range.

We suggest that WIV of the downstream cylinder is excited by the unsteady

vortex-structure interactions between the body and the upstream wake. Coherent

vortices interfering with the second cylinder induce fluctuations in the fluid force

that are not synchronised with the motion. A favourable phase lag between the

displacement and the fluid force guarantees that a positive energy transfer from the

flow to the structure sustains the oscillations. If the unsteady vortices are removed

from the wake of the upstream body then WIV will not be excited.

We introduce the concept of wake stiffness, a fluid dynamic effect able to sustain

a body without any structural stiffness into oscillatory motion. The role played by

the unsteady wake is central to this idea and contributes to the understanding of

WIV as a wake-excited and wake-sustained mechanism. A simple analytical model

predicts the frequency of response rather well, but fails to model the displacement

because important nonlinear effects are not taken into account. We conclude that

while unsteady vortex-structure interactions provide the energy input to sustain

WIV, it is the wake stiffness effect that defines the character of the response.

Suppression of cross-flow and in-line VIV, with resulting drag coefficients less

than that for a static plain cylinder, is achieved using two-dimensional control plates

free to rotate around the body. Devices based on parallel plates show great potential

to suppress VIV and WIV of offshore structures with considerable reduction in drag.
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Chapter 1

Introduction

The last two decades have seen a significant transformation in the offshore oil

exploration around the world. New technologies enabled the industry to move

further offshore in search for oil in water depths that were unimaginable just a few

years ago. The engineering of complex floating systems made it possible to move

beyond the limit of 1000m below the sea level to the so called ultra-deep waters

around 3000m. As illustrated in Fig. 1.1, offshore platforms evolved from the fixed

towers installed in shallow waters to the gigantic spar platforms capable of operation

in great water depths.

Recently, an enormous oil reservoir has been discovered in the Campos and

Santos basins, 500Km off the south-eastern coast of Brazil, with estimated 10 billion

barrels of crude oil and vast quantities of gas. However, in this case, the oil is not

only located at 2200m below the sea level, but also hidden between 3000 to 5000

metres below the sea bed. To make matters worse, the oil is located underneath

a thick and fragile geological formation of salt-rock — thus the reservoir is known

as the Pre-salt. Reaching the bottom of the sea is already a big problem in itself,

drilling through a thick layer of unstable salt-rock is yet more complicated.

Technological advancements permitted the discovery of new reservoirs, but to

find access to the oil is now the problem challenging offshore engineers. Because the

first fixed platforms cannot operate in such depths, new floating systems appeared

to dominate modern offshore exploration. Semi-submersible and FPSO (floating



Fig. 1.1: Types of offshore platforms employed for oil exploration in different water depths (not in
scale).

production, storage and offloading system) platforms for production, along with

tension-leg and spar platforms for drilling, represent great leaps in the technological

history line (Fig. 1.1). The complex drilling process, for example, is yet another

technical breakthrough. The challenge does not stop with manufacturing the drilling

apparatus, but goes far beyond to the operation of a massive dynamic system under

severe conditions of wind, sea currents and waves.

Risers are long cylindrical pipes, with different functions, that connect the

floating platform to the sea bed. Production risers are normally used to inject

water into the well and transport oil and gas back to the rig. They can be relatively

flexible structures made of layers of rubber and steel. On the other hand, rigid

drilling risers, operated from the floating platform thousands of metres above, are

required to perforate through rock and open the well. Some people in the industry

illustrate the point by saying that drilling a well at the bottom of the ocean is like

hitting the bulls-eye with a 3000m flexible stick while riding a horse.

One of the major problems during offshore drilling and production is the

vibration induced on the riser by sea currents. As water flows around the riser

it excites the structure into several modes of vibration that vary with many of

the structural properties of the system. Because they are so long and slender,

risers are better modelled by a theory of flexible strings rather than by the classical
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theory of stiff beams. It is easy to imagine how the actual drilling operation can

be complicated by such vibrations, but in the long term the structural integrity of

the pipe can also be compromised due to structural fatigue. Therefore, it is very

important for the offshore industry to find solutions that will help to suppress the

flow-induced vibration of risers.

Interestingly the present work appears at a time of discussions concerning global

warming caused by the excessive use of fossil fuels. At the same time that Brazil

has found long-term reserves of oil the country is also investing to keep the position

of leader in ethanol exportation. Even though there is a universal expectation that

the use of fossil fuels will be reduced in the future, it appears that crude oil still

remains a precious commodity for many decades to come.

Nevertheless flow-induced vibration (FIV) is not a concern for the offshore

industry alone, but a problem present in many branches of engineering. Historically,

the first attempts to suppress FIV are found in the civil engineering design of

chimneys and suspension bridges. The vibration of transmission lines has attracted

some attention from the electrical engineering community as well. The industry

of heat exchangers has also invested resources to avoid the vibration of tube

bundles inside pressure vessels. Later, the problem was investigated by aeronautical

engineers interested in aero-elasticity and, more recently, following the exploration

of oil in deep waters, it became a real concern for the offshore industry. The present

study is mainly motivated by the needs of the offshore industry, but clearly has

applications in many other areas of engineering.

1.1 Objectives

Modern deep-water floating systems can accumulate as many as 40 production risers

and many more mooring lines in a single platform. Although Fig. 1.2 is a simple

artistic representation, it illustrates rather well the point that a great number of

flexible, underwater structures are susceptible to FIV and to interact with each

other and the hull of the platform.

Thinking about the large drilling platforms illustrated in Fig. 1.1 (tension-leg

16



Fig. 1.2: Artistic representation of a semi-submersible platform (foreground) and a FPSO system
(background) showing the large number of risers, mooring lines and other cylindrical
structures susceptible to FIV. Courtesy of www.offshore-technology.com.

and spar) we can see that the drilling riser — vertically stretched from the centre

of the platform down to the sea bed — is surrounded by tendons along its entire

length. Flow interference from the wake generated from other structures can amplify

the response of the riser, affecting its operation and increasing the risk of fatigue

damage. A few solutions have been developed to suppress vibrations from isolated

risers, but we believe now is time to turn our attention to the vibration problem

aggravated by flow interference.

In the present study we are concerned about the fluid-elastic mechanism called

wake-induced vibrations (WIV). Simply put it is the vibration induced on a bluff

body by the interference of the wake generated from another body placed somewhere

upstream. In our offshore example, one riser can fall in the wake of another

depending on the direction of the current. A complex WIV excitation mechanism

can be initiated and conventional suppressors may not be effective to restrain it to

acceptable levels. In this context, the main objectives of the present study are:

• First, understand the physical aspects of the fluid-structure mechanism that

17



drives wake-induced vibrations of the downstream body. Previous works have

presented the response of structures with flow interference but they failed to

provide a satisfactory explanation of the mechanism therein.

• Second, propose new solutions for suppressing WIV without incurring a drag

penalty to the structure. We believe that only with a solid understanding of

the WIV mechanism will it be possible for successful suppression devices to

be designed.

1.2 Methodology

For a long time the problem of WIV was the main concern of the heat-exchanger

industry; hence most of the experiments employed heavy tubes arranged in arrays

of several units in all sorts of tight configurations. A substantial amount of data has

been generated and was certainly useful for that industry to improve design practices

and guidelines. But following the demand of the offshore industry, experiments

naturally moved from configurations of heavy, rigid tubes in close proximity to

lighter, flexible pipes with larger separations.

A full-scale offshore riser cannot be reduced to laboratory scale while still keeping

all of its structural properties. The complex sea current — with flow speed and

direction varying along the water depth — is also impossible to be reproduced to

the same scale as the structure. Even if a complete representation of the problem

were possible, such a complex experiments would probably not help to fulfil the

objectives set above. Experiments with many parameters and variables do not

throw any light on the understanding of the fluid-elastic mechanism behind such

vibrations. More careful investigators started to limit the number of tubes and

degrees of freedom resulting in a few experiments that reported response curves for

WIV of the downstream cylinder of a pair.

For that reason, in the present experimental investigation we will represent a

section of a flexible riser by a rigid cylinder mounted on an elastic system. The

structural properties of the riser will be simplified to a mass-spring-damper oscillator
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free to respond to the flow excitation in one or two degrees of freedom. On the other

hand, the sea current on that section of riser will be simulated in the laboratory by

a uniform velocity profile generated in a recirculating water channel.

With this approach we believe it will be possible to identify significant

parameters, characterise the phenomenon and eventually understand how the wake

of one bluff body can interfere with the vibration of another.

1.3 Structure of the thesis

The present thesis is divided into 9 chapters, including this introduction:

• Chapter 2 presents a brief introduction to the phenomenon of vortex shedding

of bluff bodies and a literature review about flow-induced vibration of a single

rigid cylinder.

• Chapter 3 introduces the concept of flow interference between two bluff bodies

and presents a literature review of flow-induced vibration of a pair of cylinder

in tandem.

• Chapter 4 describes the experimental set-up employed in this study, comprising

flow facilities, elastic rigs, cylinder models and experimental techniques.

• Chapter 5 presents preliminary results for vortex-induced vibrations (VIV) of

a single cylinder followed by the main results of the WIV response of the

downstream cylinder of a pair.

• Chapter 6 is the first discussion chapter; concerned with the flow-structure

interaction responsible for the excitation of WIV. The key experiment being

conducted in a steady shear flow without vortices in order to prove that

the WIV mechanism is dependent on the unsteady interaction between the

upstream wake and the cylinder.

• Chapter 7 is the second discussion chapter; concerned with the characteristics

of the WIV response. The key experiment being conducted with a system

19



without springs in order to prove that there is a wake-stiffness effect, greater

than the stiffness generated by the springs, dominating the response.

• Chapter 8 is an application of the theory discussed in previous chapters to

the development of VIV and WIV suppressors. Devices are based on two-

dimensional control plates free to rotate around the centre of the cylinder.

This chapter is not essential for the understanding of the WIV mechanism,

but was included as an example of how our theory can be employed in the

field.

• Chapter 9 concludes the thesis summarising the main findings and contribu-

tions of the present study. It also suggests further works to advance the present

investigation.

• Appendix A is a brief explanation about the method employed to generate

power spectral density plots throughout the thesis.
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Chapter 2

Literature review: Flow-induced

vibration of a single cylinder

In fluid mechanics, a structure immersed in a fluid current is classified as a bluff

body if it generates separated flow over a significant proportion of its surface.

This definition is not strictly related to the geometry of the body itself, but with

characteristics of the flow around the body, being especially associated to the

existence of separated flow.

A circular cylinder is the classic example of a bluff body due to its simple axi-

symmetric geometry. In practical engineering applications of cylindrical structures

subjected to fluid flows the fluid-elastic interaction between the flow and the

structure can excite the body into flow-induced vibrations (FIV). The present study

of FIV begins with a brief review of the phenomena of flow separation and vortex

shedding of circular cylinders.

2.1 Vortex shedding from bluff bodies

Flow visualisation produced by photographing particles travelling in water current

is shown in Fig. 2.1. As the free stream approaches the cylinder the flow splits

around the body. Viscous boundary layers will develop from the front stagnation

point while the flow remains attached to the walls. It is within the boundary layer



Fig. 2.1: Visualisation of the flow around a circular cylinder at Re = 2000. ‘A’ is the front
stagnation point, ‘B’ is the base point and ‘S’ are the separation points. Adapted from
van Dyke (1982).

that fluid viscous forces are playing a role. The geometry of the body generates

an adverse pressure gradient that, acting on the viscous profile of the boundary

layer, will cause the flow to separate from the wall at the separation points on each

side. The arch at the base of the cylinder between both separation points faces a

separation region of recirculating flow where the wake begins.

The pressure field around the body — that has its maximum value at the

stagnation and its minimum value around the shoulder of the cylinder — is not able

to recover the same stagnation value at the base point due to the separation of the

flow. Therefore, a considerable portion of the cylinder is immersed in a region with

roughly constant but lower pressure. The difference between the pressure integrated

along the front and back half of the cylinder results in the high drag force that is

characteristic of bluff bodies.

The phenomenon of flow separation is governed by the balance between inertial

and viscous forces acting in the flow, more precisely within the boundary layer. The

Reynolds number

Re =
ρUD

µ
=
UD

ν
(2.1)

is a non-dimensional parameter that represents the ratio between forces with those

two natures. U is the free stream velocity, D is the external diameter of the cylinder

(the characteristic dimension of this geometry), ρ represents the density and µ the

dynamic viscosity of the fluid (giving kinematic viscosity ν = µ/ρ).
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For very low values of Re viscous forces dominate and the flow remains attached

around the circumference. But as Re increases the boundary layer is not able to

withstand a sufficiently high adverse pressure gradient and separation eventually

occurs. Now, the boundary layer is a region of concentrated vorticity generated by

the shear velocity profile close to the wall. After separation the vorticity found in

the boundary layer is detached from the surface and convected into the near wake

forming a free shear layer on each side of the body. The interaction of these two

flow structures is the beginning of the vortex-shedding mechanism. It is the flux

of vorticity at the separation points constantly supplying the circulation in the free

shear layers that sustains the phenomenon.

Bearman (1984) wrote a comprehensive review on the mechanism of vortex

shedding from bluff bodies. He explains that “A key factor in the formation of a

vortex-street wake is the mutual interaction between the two separating shear layers.

It is postulated by Gerrard (1966) that a vortex continues to grow, fed by circulation

from its connected shear layer, until it is strong enough to draw the opposing shear

layer across the near wake. The approach of oppositely signed vorticity, in sufficient

concentration, cuts off further supply of circulation to the growing vortex, which is

then shed and moves off downstream.”

The vortex shedding mechanism involves the mixing of flows of oppositely signed

vorticity from both sides of the cylinder. Consequently, the strength of individual

vortices will be less than the total circulation fed from one side of the body during one

cycle. In fact, Roshko (1954) estimated that only 43% of the circulation produced in

the shear layers remain in the wake after the formation region, which is defined as the

distance downstream of the cylinder where a coherent vortex is formed and released.

As a result a characteristic von Kármán vortex street is formed downstream of bluff

bodies and will persist even for higher Reynolds number (Fig. 2.2).

Bearman (1984) also states that “it is the presence of two shear layers, rather

than the bluff body itself, that is primarily responsible for vortex shedding. The

presence of the body merely modifies the process by allowing feedback between

the wake and the shedding of circulation at the separation points.” Therefore, the

rate at which vortices are cyclically shed from the body depends essentially on the
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Fig. 2.2: Turbulent vortex wake of a circular cylinder at Re = 104. Boundary layers are still
laminar. Reproduced from van Dyke (1982).

interaction between the two shear layers as a function of the free stream velocity

and the diameter of the body. The non-dimensional Strouhal number

St =
fsD

U
(2.2)

relates the frequency of vortex shedding fs with U and D. Many authors have

measured St for a single static cylinder and found that it is close to 0.2 for subcritical

Re. (Bearman, 1967).

As Re is further increased, a transition from a laminar to turbulent flow regime

will start to happen. First the wake further downstream from the cylinder becomes

turbulent, but with an additional increase in Re the start of a turbulent regime

travels upstream reaching the free shear layers and eventually affecting the boundary

layers. Turbulent boundary layers have more kinetic energy close to the wall and are

able to resist longer the effect of an adverse pressure gradient. Hence, the separation

is delayed and a narrower wake is formed, resulting in a sudden drag reduction on the

body. The critical Reynolds number at which this drag crisis occurs for a smooth

cylinder is around 2× 105 (Zdravkovich, 1997).

Between Re = 2× 105 and 3× 106 the unstable turbulence transition generates

a chaotic wake that lacks coherent vortices. However for postcritical Reynolds

numbers above 3 × 106 a fully turbulent vortex wake reappears. In fact, well

developed, organised, but fully turbulent wakes are often captured in aerial

photographs taken from clouds passing around islands, representing a Reynolds

number of an order higher than 109. As far as this study is concerned Re was kept
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Fig. 2.3: Variation of lift and drag coefficients with Reynolds number for a circular cylinder. CD

represent mean drag; ĈL and ĈD represent the magnitude of fluctuating lift and drag.
A small ‘p’ and ‘f ’ indices represent terms due to pressure and friction drag. Dashed
regions represent the scatter of experimental data. Adapted from Zdravkovich (1997).

in the subcritical region for all experiments, which means that the wake was mostly

turbulent, but boundary layers were still in a laminar state at separation (as in the

flow illustrated in Fig. 2.2).

Zdravkovich (1997) presents a detailed classification of the laminar-turbulent

transition on a circular cylinder flow, but probably the most useful result from an

engineering point of view concerns the fluid loads acting on the body (summarised in

Fig. 2.3). Drag and lift coefficients are plotted against Reynolds number covering the

transition from laminar to turbulent regime in the wake, shear layers and boundary

layers. CD curve represents the time-average drag coefficient acting on the cylinder,

which is divided into two terms according to their nature: friction drag CDf and

pressure drag CDp. For the range Re = 103 − 105, in which all experiments of this

work were performed, the total drag reaches a plateau of CD ≈ 1 with the friction

drag component being negligible when compared to the pressure drag component.
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Fig. 2.4: Harmonic oscillator model representing an elastically mounted cylinder. The pressure
field in the background is adapted from Drescher (1956).

2.2 Vortex-induced vibration of a single cylinder

Vortex-induced vibration is a type of FIV that has its origin in the cyclic loads

generated by vortices around a bluff body. Several authors have produced

comprehensive reviews about the VIV mechanism of a single cylinder (Sarpkaya,

1979; Bearman, 1984; Parkinson, 1989; Blevins, 1990; Zdravkovich, 1997). In this

section we introduce the phenomenological aspects that will be useful when studying

FIV mechanisms on a pair of cylinders.

In the same way that an asymmetric pressure distribution generates drag in the

streamwise direction, an asymmetry of the pressure field in relation to the other

orthogonal plane of the cylinder generates a fluid-dynamic lift force in the cross-flow

direction. Once the symmetry in the wake is broken (very early in the Re scale) the

cyclic mechanism of vortex shedding changes the pressure field around the body.

Within one shedding cycle the cylinder will experience a change in the direction of

lift as vortices are formed and released.

Fig. 2.4 shows a schematic representation of the pressure field around a cylinder

for the instant when a vortex is being formed at the upper side of the body. Arrows

pointing outwards from the cylinder wall represent relative suction. By integrating

the pressure field around the circumference a resultant force F is obtained, which

can be projected into a drag component Fx and a lift component Fy in relation to

the x and y axes. During the cycle of vortex shedding Fy and Fx will fluctuate
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according to the shedding frequency fs. Because two vortices are shed during one

cycle, one from each side of the cylinder, the frequency of fluctuation of the lift force

will be fs, while the drag component fluctuates with 2fs.

Turning back to Fig. 2.3 we can now examine the behaviour of the fluctuating

terms of drag and lift represented by ĈD and ĈL. When a regular wake of alternating

vortices is developed around Re = 104 − 105 we observe a fluctuation in the drag

force plotted as the dashed line ĈD that would have frequency 2fs. In the same

way, fluctuations in the lift force ĈL also appear with the formation of alternating

vortices and follow the shedding frequency fs. Fluctuations of lift are more intense

than the drag component and a considerable reduction in both ĈL and ĈD is also

observed after the transition to the fully turbulent regime. As mentioned before,

experiments in the present work were designed to be in the range Re = 103 − 105,

where CD, ĈD and ĈL are stabilised around their maximum values for the developed

wake regime with laminar boundary layers.

2.2.1 Elastically mounted cylinder

Now, if a cylinder is considered to be an elastic structure — which is the case for

engineering applications — it will present structural properties such as mass (m),

stiffness (k) and damping (c), characterizing the dynamic system represented in

Fig. 2.4. Due to the cyclic nature of vortex shedding in the near wake the body

experiences fluid force fluctuations that can excite the system into VIV. Allowing

for displacements only in one degree of freedom (1-dof) in the y-axis, the equation

of motion for the harmonic oscillator can be modelled by

mÿ + cẏ + ky = Fy(t) (2.3)

y(t) = ŷ sin(2πft), (2.4)

where y, ẏ and ÿ are respectively the displacement, velocity and acceleration of the

body and Fy(t) is the time-dependent fluid force in the cross-flow direction.

Following an analysis proposed by Bearman (1984), y(t) of a cylinder under VIV

may be expressed by the harmonic response of a linear oscillator. In Eq. 2.4, ŷ and

27



f respectively represent the harmonic amplitude and frequency of oscillation. The

fluid force and the body response oscillate at the same frequency f , which is usually

close to the natural frequency of the system for large-amplitude oscillations under

a steady-state regime of VIV. According to this ‘harmonic forcing and harmonic

motion’ hypothesis the fluid force can be expressed by

Fy(t) = F̂y sin(2πft+ φ), (2.5)

where φ is the phase angle between the displacement and the fluid force. For body

excitation to occur, the phase angle between y(t) and Fy(t) must be between φ = 0◦

and 180◦. A phase angle equal either to 0◦ or 180◦ means that no energy is transferred

from the fluid to the structure to excite any vibration.

A linear oscillator presents an undamped natural frequency

f0 =
1

2π

√
k

m
(2.6)

that only takes into account the structural stiffness (k) and mass of the system (m).

The structural damping is generally expressed by a damping ratio

ζ =
c

2
√
km

, (2.7)

defined as a fraction of the critical damping. If the structural damping is kept

sufficiently low, the damped natural frequency f0d
= f0

√
1− ζ2 can be considered

approximately equal to f0.

As one might expect Fy is non-dimensionalised into the corresponding force

coefficient

Cy(t) =
Fy(t)

1
2
ρU2DL

, (2.8)

which can be divided into a time-average term Cy and a transient term modelled as

a sine wave with amplitude Ĉy, hence

Cy(t) = Cy + Ĉy sin(2πft+ φ). (2.9)

The drag component is similarly non-dimensionalised into a mean Cx and a

fluctuating term Ĉx; however the mean drag is different to zero most of the time.

The value of Cx is of great interest for engineering applications and will be of used

when we discuss techniques to suppress FIV without increasing drag.
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2.2.2 Typical VIV response

Now, if the frequency of vortex shedding is close to the natural frequency of

oscillation of the structure (fs ≈ f0), the system will respond with a type of

resonance phenomenon that amplifies the amplitude of vibration.

Experimental results showing a typical response of VIV are presented in Fig. 2.5,

where non-dimensional amplitude and frequency of oscillation are plotted against

reduced velocity. Williamson & Govardhan (2004) classified three different branches

of response for low mass and damping cylinders: an initial branch in which the

oscillation starts to build up; an upper branch of maximum amplitude around the

resonance peak; and a lower branch that persists until the oscillations eventually

die out.

It is useful to represent the flow speed non-dimensionalised by the cylinder

diameter and the natural frequency of oscillation creating a parameter called reduced

velocity defined as U/Df0. The reduced velocity for maximum VIV amplitude occurs

around U/Dfs (the inverse of the Strouhal number), that is around the resonance

where fs = f0.

As flow speed (U) increases, vortex-shedding frequency (fs) gets close enough

to the body’s natural frequency of oscillation (f0) in a way that the unsteady

pressure fluctuation in the near wake induces the body to respond in resonance.

Once the cylinder starts to oscillate, high-amplitude movements will control the

vortex formation and fs will be locked-in by the oscillation frequency (f) near f0.

If the velocity continues to increase the typical vortex-shedding frequency will move

far away from the natural frequency of the system and fs and f will be uncoupled

again

In the frequency plots of Fig. 2.5 the dashed line of St = 0.20 gives an idea of

the expected vortex shedding frequency for a fixed cylinder versus reduced velocity.

Where this line crosses unity the frequency of the excitation fs is very close to the

natural frequency of the system and an amplified peak of amplitude gives evidence

of a resonant behaviour. The range of reduced velocity between the beginning of

the initial branch and the end of the lower branch is called the synchronisation or
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Fig. 2.5: Typical VIV response (amplitude and frequency) of a single cylinder. m∗ζ ≈ 0.01 for
both data-sets. Note that the frequency of oscillation and the reduced velocity are
non-dimensionalised using the natural frequency in still water (fW ) and not the natural
frequency in air (f0) as usual. Adapted from Govardhan & Williamson (2000).
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lock-in range.

Depending on the mass of the system and the specific mass of the fluid in which

the cylinder is immersed, the natural frequency of oscillation can be significantly

influenced by the additional mass of fluid that is accelerated with the body. For

heavy cylinders immersed in air, the added fluid mass can be neglected, but for

light cylinders immersed in water the body’s mass and the added fluid mass can

have the same order of magnitude. For this reason, the parameter

m∗ =
m

ρπD
2

4
L

(2.10)

is very important for FIV analysis and represents the ratio of total oscillating

structure mass (m) to the mass of displaced fluid (L being the submerged length

of the cylinder). As a consequence of the added fluid mass, the body’s natural

frequency in air (f0) will be different from the natural frequency in still water (fW ).

According to Bearman (1984) a simple analysis for a linear oscillator model

of VIV, assuming harmonic forcing and harmonic response, shows that response

is inversely proportional to the product of m∗ and ζ. Differentiating ẏ and ÿ from

Eq. 2.4, replacing them together with Eq. 2.5 in Eq. 2.3 and equating sine and cosine

terms, results in an expression for the amplitude of response non-dimensionalised

by the diameter
ŷ

D
=

1

4π3
Ĉy sinφ

(
U

Df0

)2(
1

m∗ζ

)(
f0

f

)
. (2.11)

Analogously, the frequency of oscillation non-dimensionalised by f0 can be obtained

as

f

f0

=

[
1− 1

2π3
Ĉy cosφ

(
U

Df0

)2(
1

m∗

)(
D

ŷ

)] 1
2

. (2.12)

Bearman (1984) comments that for large-amplitude oscillations of a bluff body in

air, where the m∗ parameter might be typically of order 103, the frequency of body

oscillation should be close to its natural frequency. However, for bodies immersed

in denser fluids such as water, where the m∗ parameter may be of order unity,

f can be significantly different from f0. This is observed in the frequency plots

of Fig. 2.5. For m∗ = 10.3 the frequency of oscillation during the synchronisation

range is very close to 1, but when m∗ is reduced to 1.2 the frequency of oscillation
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almost doubles. Govardhan & Williamson (2000) showed that while the maximum

amplitude is related to the product m∗ζ, the widening of the synchronisation range

in relation to reduced velocity is associated to the m∗ parameter alone. This is also

shown in their results plotted in Fig. 2.5 where both data-sets have a similar value

of m∗ζ ≈ 0.01 but with a one order of magnitude difference in m∗.

From Eqs. 2.11 and 2.12 Bearman (1984) states that “It is clear that the phase

angle φ plays an extremely important role. The amplitude response does not depend

on Ĉy alone but on that part of Ĉy in phase with the body velocity. Hence,

measurements of the sectional fluctuating lift coefficient on a range of stationary

bluff-body shapes will give little indication of the likely amplitudes of motion of

similar bodies flexibly mounted”. Combining Eqs. 2.11 and 2.12 it is possible to

calculate

φ = arctan
2ζ(f/f0)

1− (f/f0)2
(2.13)

by knowing ζ and f0 and measuring f .

Khalak & Williamson (1999) also performed experiments with low mass-damping

systems in order to investigate the behaviour of φ in relation to the response

branches. Fig. 2.6 presents their results showing a clear identification of the initial,

upper and lower branches of response mentioned above. The bottom graph reveals

a phase shift of almost 180◦ in φ when the response changes from the upper to the

lower branch. This phase shift is associated with different modes of vortex shedding

in the wake as will be explained below.

2.2.3 Decomposition of fluid forces

As discussed by Williamson & Govardhan (2004), the total fluid force acting on

the cylinder can be divided into two components: a potential-force component FyP
,

given by the ideal flow inertia force; and a vortex-force component FyV
, due only to

the dynamics of the vorticity field around the body:

Fy = FyP
+ FyV

. (2.14)

By definition, FyP
is always opposing the body’s acceleration and its magnitude is

proportional to the product of the displaced fluid mass and the acceleration of the
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body. On the other hand, FyV
essentially depends on the dynamic of vortices in the

wake and may be expressed in terms of another phase angle φV in relation to the

displacement of the cylinder y(t), resulting in

Ĉy sin(2πft+ φ) = ĈyP
sin(2πft+ 180◦) + ĈyV

sin(2πft+ φV ), (2.15)

expressed in terms of force coefficients. Later in the present work this decomposition

will be applied to analyse fluid forces acting on the downstream cylinder of a tandem

pair.

The transition between branches is accompanied with an almost 180◦ phase shift

first in φV and then in φ. The phase shift in φV is associated with a transition

between two different modes of vortex shedding and occurs as the oscillation

frequency (f) passes through the body’s natural frequency in water (fW ). For

cylinders oscillating in the initial branch (as well as static bodies) we observe two

single vortices being shed per cycle, therefore the name ‘2S mode’ as illustrated

by PIV measurements in Fig. 2.6. But for oscillations occurring in the upper and

lower branches, two pairs of vortices are shed during each cycle, suggesting the

nomenclature ‘2P mode’. The phase shift in φ occurs when f passes through f0 and

marks the beginning of the lower branch.

Khalak & Williamson (1999) talk about interesting phenomena of hysteresis and

intermittence associated with the first and second transitions between branches. It

is important to note that in such a self sustained regime of oscillation a change

in the response is clearly related to a change in the vortex shedding mode in the

wake. That is to say that the response of the structure is strongly dependent on the

vortex shedding mechanism, and vice versa, within the synchronization range. This

emphasises the importance of the phase angle between Fy and y in inputting energy

into the system to sustain different regimes of VIV.

Equating sine and cosine terms in Eq 2.15, it is possible to determine

φV = arctan
Ĉy sinφ

Ĉy cosφ− 2π3 ŷ
D

(
f
f0

)2 (
U
Df0

)−2 , (2.16)

given that the amplitude and frequency of vibration and fluid forces are known.

Since FyP
is by definition in antiphase with the acceleration and proportional to the
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Fig. 2.6: Amplitude response and phase angle φ versus reduced velocity (non-dimensionalised using
the natural frequency in still water fW ). Data points are for m∗ = 3.3, reproduced from
Khalak & Williamson (1999); modes of vortex shedding obtained with PIV are adapted
from Govardhan & Williamson (2000).
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mass of displaced fluid, ĈyP
can be expressed by

ĈyP
= 2π3 ŷ

D

(
f

f0

)2(
U

Df0

)−1

(2.17)

and the remaining vortex-force term ĈyV
by

ĈyV
=
(
Ĉy

2
+ Ĉ2

yP
− 2ĈyĈyP

cosφ
)1/2

. (2.18)

2.3 Other types of FIV

VIV appears to be the FIV mechanism with greater relevance to the present work.

However, there are other fluid-elastic mechanisms that occur for a single cylinder

that may shed some light on the understanding of WIV of interfering structures.

Before we move on to a pair of interfering cylinders, let us discuss briefly some of

these other mechanisms.

While VIV has its origin in the vortex shedding mechanism, other types of FIV

may as well come from different sources of excitation in the flow. Assuming that an

elastic structure can be usually represented by the second order system presented

on the left-hand side of Eq. 2.3 the fluid force Fy(t) may be modelled in different

ways other than Eq. 2.5 in order to describe distinct flow phenomena. Surface

waves in water, for example, can also generate harmonic fluctuations in the pressure

field around the body causing vibrations that are amplified around the resonance.

But the characteristic frequency of this excitation is not related to the bluff body

shedding frequency nor is synchronised by the oscillation of the body.

Non-harmonic excitations from the fluid may also generate vibrations. Random

fluctuations in the free stream such as turbulence may induce a type of vibration

called buffeting. Turbulent flows present unsteady components with many different

scales and frequencies spread across a wide spectrum. Depending on turbulence

intensity and structural properties the body may respond with vibrations around

the natural frequency, as if it were excited by a random ‘white noise’. Acoustic

fluctuations and other sources of random pressure fluctuation may also have a similar

effect.
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An elastic structure placed in front of a steady jet may be excited into vibrations

as the jet switches from one side of the body to the other, inputting energy into the

system in a mechanism called jet-switching. The presence of the structure interacts

with the jet causing a change in momentum that generates fluid forces acting on the

body. A low-momentum shielded flow (the opposite of a high-momentum jet) may

excite structures in a similar fashion.

2.3.1 Classical galloping of noncircular bodies

A second FIV mechanism that is most relevant to the present study is classical

galloping. In principle, the terminology ‘galloping’ can be associated to any fluid-

elastic instability that occurs in one degree of freedom. In this sense, the typical

VIV of a cylinder oscillating only in the transverse direction is a type of galloping.

However, ‘galloping’ has been generally employed to describe a specific type of

FIV mechanism that occurs for bluff bodies with non-circular cross sections. In

the present work we shall refer to it as ‘classical galloping’ to avoid confusion.

Comprehensive reviews of the classical galloping theory were written by Parkinson

(1971, 1989) and Blevins (1990). Yet a brief description of the mechanism presented

here will help the understanding of other FIV mechanisms to be discussed later in

this text.

Classical galloping of non-circular cylinders is caused by a fluid-dynamic

instability of the cross section of the body such that the motion of the structure

generates forces which increase the amplitude of vibration (Bearman et al., 1987).

Consider the bluff body presented in Fig. 2.7. A square section with sides D is

mounted on an elastic system (m, c, k) allowing displacements in the y-axis only.

It is exposed to a steady flow with velocity U normal to one of its sides. If a small

perturbation happens to displace the body from rest the relative velocity of the flow

will be a vectorial sum of U and the body’s velocity ẏ, defined by an angle of attack

α in relation to the free stream.

Differently from a circular cylinder, a square body presents sharp edges causing

shear layers from both sides to separate at fixed separation points located at the
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Fig. 2.7: One-degree-of-freedom model for classical galloping of a square section bluff body.
Adapted from Blevins (1990).

front corners. Now, if the body presents relative cross-flow motion ẏ the shear layers

separating from each side will generate an asymmetric flow field with consequent

asymmetric pressure distribution, resulting (in this case) in a fluid force Fy in the

same direction as the motion that contributes to increase the displacement.

Evidently the stiffness of the spring will act to restore the body back to y = 0,

but when it reaches a maximum displacement and ẏ changes direction the process

is inverted, though with Fy still acting in the same direction as ẏ. Therefore,

in the classical galloping mechanism the cross-flow fluid force is in phase with

the body’s velocity acting as a negative damping term in the equation of motion

(Eq. 2.19). Hence, classical galloping is classified as a damping-controlled fluid-

elastic mechanism. The magnitude of Fy increases with α, which itself increases with

ẏ, resulting in a continuous increase in the body’s steady state amplitude of vibration

with increasing flow speed. “For while VIV is typically limited to amplitudes less

than 1D, galloping amplitudes can be many times D” (Parkinson, 1971).

As discussed, classical galloping is not associated with the vortex shedding

mechanism of bluff bodies. Of course a vortex wake will develop further downstream

of a square section as in any other bluff body, but this instability is not a resonant

mechanism that depends on matching values of f0 and fs. For this reason classical

galloping allows for modelling with a quasi-steady approach considering that the
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VIBRATION OF A SQUARE-SECTION CYLINDER 
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Figure 5. Lateral force coefficients for square section. 
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corresponding low-damping curves, as they should be, and the lower slope and different 
shape of the low-turbulence curve is a direct consequence of the different shape of the 
C r v s  ~ curve for the low-turbulence case in Figure 5, which leads to the prediction of two 
stable galloping amplitudes of oscillation over a range of wind speeds. The curve of 
Figure 4 represents the variation with U of the lower of these two amplitudes. The upper 
amplitudes are outside the range of the test apparatus. 

The three medium-damping curves of Figure 4 also appear to be in general qualitative 
agreement with predictions of galloping theory, and the remarks above about the high- 
damping curves apply again, except that the sequence of initial velocities U i is different. 
This is examined in Section 3.3. 

3.3. PARAMETERS FOR GALLOPING THEORY 

The measurement of lateral force as a function of angle of attack on the stationary 
cylinder in the same flow for which galloping behaviour is desired is a required input to 
the quasi-steady theory. Figure 5 shows C r v s  c~ from such measurements on cylinders of 
square section. Values inferred from the present measurements of manifold pressure on a 
side are shown in comparison with three different sets of force measurements, using 
different models and techniques. The data for a given turbulence level are seen to be in 
quite good agreement, particularly for 0 < ~ < 8 °, and the markedly different shape of the 
low-turbulence curve from the others is significant in producing a different galloping 
response, as mentioned in Section 3.2. Also, the decrease in the asymptotic slope s of the 
displacement-wind speed curves with increasing turbulence is a direct consequence of the 
corresponding decrease in the range of e for positive Cy in Figure 5. 

It can also be seen from Figure 5 that the slope A1 of the curves at e = 0 lies in a fairly 
small range, 2.5 ~< A 1 < 5.5, but that it would be difficult to make a precise determination 
for a particular combination of Reynolds number and turbulence intensity because of the 
scarcity and limits on the accuracy of the data points. However, with the realization that 

Fig. 2.8: Transverse force coefficient Cy as a function of angle of attack α for square section.
Re = 12× 103 − 32× 103, TI = 0%− 12%. Reproduced from Bearman et al. (1987).

fluid force on the structure is assumed to be determined solely by the instantaneous

relative velocity. “The quasi-steady assumption is valid only if the frequency of

periodic components of fluid force, associated with vortex shedding or time-lag

effects, is well above the vibration frequency of the structure (fs � f0)” (Blevins,

1990). This is generally the case for high values of reduced velocity.

Of course a square section bluff body is also susceptible to typical VIV for low

reduced velocities, however this may be combined with a galloping excitation that

will persist even after the resonant VIV range has finished. “While vortex-induced

oscillations occur only in discrete ranges of [flow] speed, galloping will occur at all

flow speeds above a critical value determined by the structural damping” (Parkinson,

1971).

Parkinson (1971), referring to den Hartog (1956), presents a simplified quasi-

steady analysis that is very useful in predicting the stability of a 1-dof system to

classical galloping. Consider that the lift force acting on the body is a function of

angle of attack and can be measured experimentally by rotating a static body in a

steady flow. This result is presented in Fig. 2.8 revealing a similar behaviour for Cy

versus α for different Reynolds numbers and turbulence intensity. In a first order

approximation for small oscillations Fy can be expanded in power series neglecting

terms of order higher than α2, as shown in the right-hand side of

mÿ + cẏ + ky =
1

2
ρU2D

[
Cy|α=0◦ +

∂Cy
∂α

∣∣∣∣
α=0◦

α +O(α2)

]
. (2.19)

As a result, the dynamic stability of the body will depend only in the slope of Cy
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at attitude α = 0◦, with the condition for galloping to develop being

∂Cy
∂α

∣∣∣∣
α=0◦

> 0. (2.20)

According to Fig. 2.8 it is evident that this condition is satisfied for a square section.

Classical galloping oscillations will develop if Fy (which is in phase with ẏ and

takes the form of a negative damping) is large enough to overcome the positive

damping of the structure. Therefore, both flow speed for the onset of galloping and

amplitude of oscillation will depend on the structural damping of the system. By

balancing the negative damping generated by Fy and the structural damping term

of the equation of motion (cẏ) it is possible to determine the critical reduced velocity

for classical galloping to occur, given by[
U

Df0

]
crit

= 2π2m∗ζ

[
∂Cy
∂α

∣∣∣∣
α=0◦

]−1

. (2.21)

Parkinson (1971) performed experiments with different values of structural

damping verifying that the critical flow speed for the onset of the classical galloping

instability indeed depends on the mass-damping parameter of the system as well

as ∂Cy/∂α at α = 0◦, which defined by the geometry of the body. Depending on

structural parameters m∗ and ζ galloping instability can appear for relatively low

reduced velocities, overlapping with the VIV range.

Such a linear approach is useful for predicting the onset velocity for galloping,

but as the oscillations grow in amplitude this first order simplification is not valid

any longer. An improved model must take into account the nonlinear variation of

Cy versus α. A first order theory predicts that if Cy increases indefinitely with α the

amplitude will also increase with flow speed ad infinitum. It is evident from Fig. 2.8

that this is not the case, but the slope of the curve changes with the angle of attack

(α = 14◦ means that that ẏ is almost 25% of U). In fact, the amplitude of oscillation

is limited by non-linear effects between Cy and α that are not incorporated in this

first approximation.

Blevins (1990) writes that “the major limitation of the [classical] galloping theory

is that the aerodynamic coefficients are assumed to vary only with angle of attack,

but experience shows that the coefficients are affected by turbulence and vortex
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shedding.” He states that the quasi-steady assumption employed in this analysis

requires that the vortex shedding frequency be well above the natural frequency so

that “the fluid responds quickly to any structural motion.”. Based on experimental

works found in the literature he concluded that “the reduced velocity must exceed

20 [] and the amplitude of vibration cannot exceed 0.1 to 0.2D for application of

the quasi-steady theory.” Such considerations bring tight restrictions to quasi-steady

assumptions and question the application of this approach to flow-induced vibrations

of circular cylinders with interference (as will be described later in this text).

Following the same principle presented above, the terminology flutter can be

associated with fluid-elastic mechanisms occurring in two degrees of freedom. As

will be described later, 2-dof oscillations of a cylinder in the xy-plane can be classified

as a type of flutter. However, the common use of the term is historically attached to

the problem of wing instability caused by a combined effect of vertical and torsional

displacements. Blevins (1990) extends an analogous quasi-steady analysis for a 2-dof

system and describes the classical example of flutter of an aerofoil.

More than one single FIV mechanism may be acting on a structure at the same

time. For example, an offshore riser may be subject to turbulence buffeting, classical

galloping, vortex-induced vibrations and wave excitation all at once. Sometimes

different FIV mechanisms will be coupled, making it an impossible task to identify

and model them independently. But careful experiments are designed to limit the

number of parameters and variables in the system in order to separate only those

relevant to a specific fluid-elastic mechanism.
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Chapter 3

Literature review: Flow-induced

vibration of the downstream

cylinder

With a better understanding of the fluid-elastic mechanism occurring for a single

cylinder we are ready to add another identical body in the system and expand

our investigation into FIV of a pair of cylinders. This chapter introduces a few

characteristics of the flow around a pair of cylinders and discusses some of the

mechanisms that have been suggested in the literature as the origin of vibrations of

bluff bodies with flow interference.

As we saw in Chapter 2, the alternate shedding of vortices from a bluff body is

the origin of its vortex-induced vibrations, but other types of excitation from the

flow may also result in different types of flow-induced vibrations.

3.1 Flow interference around a pair of cylinders

In the present work we are particularly concerned with the flow interference between

a pair of cylinders in tandem (both cylinders aligned with the free stream, y0 = 0 in

Fig. 3.1). The streamwise separation x0 is defined from the centre of one cylinder

to the centre of the other. It is not difficult to imagine that coherent flow structures



Fig. 3.1: Tandem arrangement of a pair of circular cylinders. x0 is measured from centre to centre.

from a source located upstream will interfere with the fluid-elastic dynamic of a

second body placed downstream. The cylinder placed upstream is exposed to a clear

free stream with velocity U , but the downstream body is immersed in a disturbed

flow region created by the wake of the first cylinder. (Reynolds number is based on

the velocity for the upstream body.)

Vortices shed from the first body will not only pass by or impinge on the

second cylinder, but also interfere with its own vortex shedding process forming the

downstream wake. Now, if the second cylinder is mounted on an elastic base, as the

one described in Chapter 2, the response of the body will not be a simple VIV, but a

type of vibration that is influenced by the wake coming from the upstream body. But

before we analyse in detail the dynamic response of this body, we should consider

some fundamental aspects of the flow interference around two static cylinders.

3.1.1 Interference regimes in the wake of a pair of static

cylinders

Early experiments with tandem static cylinders identified two different interference

regimes associated with the formation of a developed vortex street in the gap between

the bodies. The gap flow is characterised by the presence of two unstable shear
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(a) (b)

Fig. 3.2: Regimes of flow interference for tandem cylinders for different separations. (a)
Classification of tandem interference regimes proposed by Igarashi (1981). (b) Numerical
simulations from Carmo (2005), Re = 300.

layers that, depending on x0 and Re, may reattach to the second cylinder, form

regions of recirculation or even a fully developed vortex street in the gap. Igarashi

(1981) presented a detailed classification dividing this behaviour into six categories,

as illustrated from ‘A’ to ‘F’ in Fig. 3.2(a). More recently, Sumner et al. (2000)

produced a detailed classification of interference regimes for various configurations

of staggered cylinders.

When both cylinders are close to each other the shear layers released from the

upstream cylinder do not interact in the gap flow but create a streamlining effect

around both bodies. They reattach to the downstream cylinder such that no vortex

shedding is produced in the gap flow and only one wake is observed for both bodies

(‘A’ and ‘B’). Increasing the separation, two recirculation zones appear in the gap

(‘C’ and ‘D’). First, they are symmetric, but later they alternate as the reattachment

of the shear layer is also alternating. Hori (1959) observed that the side of the

downstream cylinder “facing the gap between the cylinders had a very low pressure,

which was almost the same as the corresponding value of the base pressure of the
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upstream cylinder. This fact is an indication that the flow in the gap is almost

stagnant.” This was verified by measuring the velocity profile with a hot-wire probe

in the gap between the cylinders (Zdravkovich & Stanhope, 1972). Hori (1959) also

found that, for certain separations, the negative gap pressure coefficient was lower

than that on the base side of the downstream cylinder. “Hence the downstream

cylinder experienced a negative drag.”

Measuring the pressure distribution around the downstream cylinder, Zdravkovich

& Stanhope (1972) found two symmetrically positioned maxima that were believed

to correspond to the reattachment of the flow separating from the upstream cylinder.

These two peaks rotate closer together to the front of the downstream cylinder as

the separation x0 increases. Consequently, they inferred the existence of two major

flow patterns: (i) the first happening for separations below a critical value, with

the downstream cylinder presenting two maxima in the pressure distribution; (ii)

and the second for separations greater than a critical value, with the downstream

cylinder only presenting one maximum in the pressure distribution (corresponding

to the frontal stagnation point). Zdravkovich (1977) suggests that during the first

regime an “elastic upstream cylinder should be less prone to vibrations due to vortex

shedding” since no developed wake is formed in its vicinity.

The beginning of the second regime is associated with the transition from flow

pattern ‘E’ to ‘F’ in Fig. 3.2(a). For a sufficiently large separation beyond a critical

x0 the shear layers start to roll up in the gap (pattern ‘E’) and finally reach a regime

in which a fully developed vortex street is formed behind the upstream cylinder

(pattern ‘F’). Entrained flow is observed in the gap and the stagnant velocity profile

immediately changes into a typical wake profile. Both regimes are illustrated in

the numerical simulations performed by Carmo (2005) and presented in Fig. 3.2(b),

where the critical separation is located somewhere between x0/D = 3.0 and 4.0.

Zdravkovich (1977) comments that “the commencement of vortex shedding behind

the upstream cylinder strongly affects and synchronises the vortex shedding behind

the downstream one. Hence, both cylinders should be equally prone to flow-induced

vibrations due to vortex shedding”.

Nevertheless, the critical x0 appears to have some dependency on Reynolds
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number with most of the literature agreeing in a value between x0/D = 3.0 and 4.0

for subcritical Re (Ljungkrona et al., 1991). It is known that the vortex formation

length of a single cylinder varies with Re. Lin et al. (1995) and Norberg (1998)

show that it decreases with increases in Re in the range Re = 103 − 105, resulting

in vortices forming closer to the base of the cylinder. Lin et al. (2002) and Assi

(2005) also show similar results for a pair of tandem cylinders. Turbulence intensity

in the free stream also affects the angle of separation on the upstream cylinder.

Therefore, contrary to what has been done in the past, we believe it is not prudent

to denote a universal value for a critical separation as we now know it depends on

other parameters as well. While Zdravkovich & Stanhope (1972) found a critical

x0/D = 3.6 for Re = 8.8× 103, Zdravkovich (1972) did not observe a developed wake

in the gap for x0/D < 4.0 for low Reynolds numbers between 40 and 250. Based on

a compilation of results from Zdravkovich (1977) we infer that the critical separation

varies between x0/D = 3.1 and 3.8 within the range Re = 5× 103 − 2× 105.

3.1.2 Interference regime in the wake of oscillating cylinders

The classification of flow interference regimes presented so far is attributed to a pair

of tandem cylinders that are stationary. “When either or both of the cylinders are

elastic or vibrate, the flow field becomes significantly more complicated because of

the interaction of the fluid flow and the cylinder motion” (Chen, 1986).

Assi et al. (2006) showed that when the downstream cylinder is allowed to

oscillate the interference between both bodies will be drastically changed depending

on the amplitude of oscillation and Reynolds number. Fig. 3.3 presents two different

regimes for the same centre-to-centre separation of x0/D = 3.0 but at different Re

and amplitude ŷ. When the maximum amplitude of oscillation is about 0.2 diameters

both shear layers were found to reattach to the second cylinder (Fig. 3.3(a)). But,

when the amplitude builds up to about 1 diameter, the large displacements of the

downstream cylinder breaks the reattachment of the shear layers and a vortex street

is formed in the gap flow close to the upstream cylinder (Fig. 3.3(b)).
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(a) Re = 3200, ŷ/D = 0.2. (b) Re = 7300, ŷ/D = 0.9.

Fig. 3.3: Different regimes of flow interference for the same separation x0/D = 3.0 at different Re
and ŷ. Downstream cylinders are shown at maximum displacement. Vorticity contours
obtained with PIV. Reproduced from Assi et al. (2006).

3.2 FIV of cylinders with flow interference

Resuming the topic discussed in Chapter 2, we can now bring together concepts

developed in the previous section to study the flow-induced vibration of a pair of

cylinders with flow interference. The complexity of such a study is significantly

increased simply by having two bodies placed together in one fluid-dynamic system;

the number of variables and parameters more than double. For example, now we

not only consider structural properties (m, c, k) of both cylinders, but also new

degrees of freedom and geometric variables such as the initial position (x0, y0) of

the cylinders in relation to themselves and the free stream.

Zdravkovich (1988) stated that “the different number of degrees of freedom of

cylinders employed in various experiments showed such a wide variety of responses

in wind and water tunnels that the governing mechanisms appeared obscure and

incomprehensible”. Following the same philosophy of work, we will restrain the

problem to as few variables as possible in order to identify important parameters

and understand the fluid-structure mechanism behind the vibrations. Therefore, our

first simplifying assumption will consider that the upstream cylinder is stationary

and only the downstream cylinder is free to respond in one degree of freedom (1-dof)

in the cross-flow direction (y-axis).
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Fig. 3.4: Sketch of interference regions. Hatched areas mean bistable flow regions. The upstream
cylinder is stationary. Adapted from Zdravkovich (1988).

As mentioned above, the main purpose of the present work is to investigate

FIV of cylinders that are initially arranged in tandem. But during the oscillations

the downstream cylinder will naturally be displaced sideways from the centreline

of the upstream cylinder. For that reason, we believe it is helpful to make some

considerations about FIV of a pair of cylinders in staggered arrangements (x0/D > 1,

y0 6= 0, in Fig. 3.1).

3.2.1 Fluid-elastic interference regions

Following a collection of several works, Zdravkovich (1988) compiled a map of

interference regions that affect FIV of a pair of cylinders in different staggered

arrangements (Fig. 3.4). He identified three regions according to the nature of the

excitation. If the second cylinder is too far apart from the static cylinder it will not

suffer any interference from its presence and should respond as an isolated cylinder.

This is identified as the ‘no interference’ region outside the dashed lines in Fig. 3.4.

‘Proximity interference’ is the region where the second cylinder is close enough to

suffer interference from the flow deflected by the static cylinder, but is not immersed

in its wake. In this region the unsteady phenomenon of vortex shedding from the

static cylinder has a minor effect on the second body and is generally neglected. The

most investigated of these configurations is the side-by-side arrangement. Finally,

when the second cylinder is immersed or under the influence of the wake of the
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stationary cylinder it is said to experience ‘wake interference’. This third region is

where we will concentrate our attention from now on.

3.2.2 Steady fluid forces

Before considering the fluid-dynamic mechanism of a cylinder oscillating in the wake

of another, it is appropriate to analyse the fluid forces that appear if the second

cylinder is also stationary. This analysis is the foundation for quasi-static and quasi-

steady assumptions that have been widely employed in the literature and will be

referred to later in this text.

We saw in Chapter 2 that a single cylinder with VIV will experience a harmonic

lift force with mean equal to zero (Cy = 0 in Eq. 2.9). Now, if the flow is biased

towards one side of the cylinder — say by tripping one of the boundary layers so

that the separation along that side is delayed — the unsteady lift force will have a

time-average component that is different to zero.

Consider then a pair of stationary cylinders that can be arranged in several

staggered arrangements (including the special tandem arrangement with y0 = 0).

The downstream cylinder, which is displaced from the centreline of the wake, will

predominantly suffer interference from the upstream wake on the internal side

(the side facing the centreline) rather than on the external side. Therefore, it is

straightforward to expect that the lift force that will be generated on this cylinder

will also have a time-average component that is not zero.

It was shown that the wake is a region of recirculating flow that presents a

deficit of streamwise velocity when compared to the free stream. That is similar

to considering that the wake is a ‘shielded’ region with a retarded velocity profile

caused by the presence of the upstream cylinder. Savkar (1970) employed a potential

flow theory representing the wake of the upstream cylinder only by its shear layers

and showed that the internal side of the cylinder facing the centreline of the wake

would experience lower velocities than the external side due to the retarded mean

velocity profile of the wake. His conclusion was that the lift force acting on the

downstream cylinder should point outwards, i.e. away from the centreline of the
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(a) Cy (b) Cx

Fig. 3.5: Contours of (a) mean lift and (b) mean drag for the downstream cylinder of a static pair
in staggered arrangements. Re = 6.1× 104. Adapted from Zdravkovich (1977).

wake. However, the wake of a cylinder, with strong coherent vortices, is far from

being considered a potential flow field and this force prediction is not observed in

experimental investigations.

Fig. 3.5(a) presents a map of the lift force acting on the second cylinder of

a pair for different staggered arrangements at Re = 6× 104. Zdravkovich (1977)

obtained this measurement by holding the upstream cylinder fixed and traversing

the downstream one across different stations (each marked by a small dot) in the

wake interference region. A negative value of Cy indicates lift force acting towards

the centreline.

The first evident observation is that the steady lift force points in the direction

of the centreline for all investigated configurations when the downstream cylinder is

at x0/D > 1. It is possible to identify two main regions of Cy lower than −0.6. The

first one, occurring for separations around x0/D = 1.2− 3.5 and y0/D = 0.25 (dash-

dotted line in the figure), is associated with the interference regime in which the shear

layers from the upstream cylinder are able to reattach to the downstream body. A

small y0/D > 0 offset within this regime will result in a sudden force of Cy < −0.6

towards the centreline while the internal shear layer still remains attached. Once the

lateral separation gets too large for viscous effects to keep the internal shear layer

deflected the reattachment will no longer hold and a free shear layer will appear on

that side, increasing Cy. This might be associated with a similar flow pattern to

regimes ‘C’ and ‘D’ for tandem cylinders presented in Fig. 3.2(a).
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Fig. 3.6: Steady lift and drag on a static cylinder in various staggered positions at Re = 5900.
Reproduced from Bokaian & Geoola (1984).

The second region with Cy < −0.6 occurs for larger lateral separations around

y0/D = 0.8− 1.4. It begins at around x0/D = 3.0 and develops a trend of minimum

Cy that will decrease in intensity as x0 is increased (indicated by another dash-dotted

line in Fig. 3.5(a)). This second region is associated with the second interference

regime in which the upstream shear layers are not able to reattach but roll up to

form a developed vortex wake in the gap. Bokaian & Geoola (1984) presented more

detailed measurements across the wake for three separations, as shown in Fig. 3.6.

Their measurements make it clear that the maximum lift towards the centreline is

decreasing as the second cylinder moves farther downstream. This is where we will

concentrate our attention and, as will be argued in the following chapters, we believe

the steady lift towards the centreline generated in this second regime is induced

by vortices coming from the upstream wake and interfering with the downstream

cylinder.

It is important to emphasise that within the whole range of longitudinal

and lateral separations investigated the steady lift force is always acting towards

the centreline of the wake. This is enough to disprove the potential flow

assumption developed by Savkar (1970). Both regions present an overlap around

x0/D = 2.7− 3.5 showing a bistable nature of the reattachment of the shear layers
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at this location at specific Re. The present work is only concerned with the flow

mechanism that excites vibrations in the second regime, where a fully developed

wake is present in the gap flow, thus our experiments will concentrate on x0/D > 4.0.

In a similar way, a map of steady drag Cx is presented in Fig. 3.5(b). Positive

values of Cx indicate drag acting in the direction of the free stream. A dotted line

indicates a contour of zero drag below which Cx is negative and the downstream

cylinder is drawn towards the upstream body. As explained before, this happens due

to the low pressure that appears in the gap region when both shear layers reattach to

the second cylinder. Beyond x0/D = 3.0 the downstream cylinder only experiences

positive drag indicating that a developed wake can now be formed in the gap. This

critical separation coincides with the overlap of the two trends of maximum Cy

presented in Fig. 3.5(a). While the downstream cylinder is immersed in the wake

of the upstream cylinder the steady drag will be lower than that expected for a

single cylinder exposed to a free stream. Only for lateral separations greater than

y0/D = 2.0 will Cx reach values around 1.0.

This brings us back to the definition of interference regions proposed in Fig. 3.4.

Zdravkovich (1977) says that “the wake boundary is a line along which the [mean]

velocity becomes the same as the free stream one. The [wake] interference boundary

is the line along which lift force becomes zero or negligible”. These two lines do not

necessarily coincide, but the wake interference boundary is always outside the wake

boundary.

3.3 Wake-induced vibration of the downstream

cylinder

After a few considerations about static cylinders we enter the main topic of the

present work concerning the response of a downstream cylinder that is free to

oscillate in the wake of a static upstream cylinder. Following Fig. 3.4 above we

will investigate vibrations in the ‘wake interference’ region, therefore called wake-

induced vibrations, or simply WIV for short.
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This phenomenon was also referred to by different names in the literature, such

as: ‘interference galloping’ (Ruscheweyh, 1983), ‘wake-induced galloping’ (Bokaian

& Geoola, 1984) and ‘wake-displacement excitation’ (Zdravkovich, 1988).

3.3.1 Response

Reflecting the need from the heat exchangers and transmission lines industry, the

earliest experiments were performed with flexible tubes in order to supply WIV

response data to the engineering design desk. A more complete understanding of

the fluid-mechanics of the phenomenon was gradually developed when researchers

started to limit the number of variables performing tests with rigid cylinders in 2-

dof. A further step was to simplify even more and allow a rigid cylinder only to

vibrate either in the in-line or in the cross-flow direction.

Flexible cylinders

King & Johns (1976) performed experiments in water (Re = 103 − 2× 104) with two

flexible cylinders for separations in the range x0/D = 0.25− 6.0. They observed that

for x0/D = 5.5 the upstream cylinder responded with a typical VIV curve reaching

amplitudes around ŷ/D = 0.45 in the resonance peak, comparable to their tests

with a single cylinder at same Re. On the other hand the downstream cylinder also

started to build up oscillations together with the upstream one, but instead of the

oscillations disappearing after the synchronisation range they remained at roughly

the same level for reduced velocities up to the highest tested. They identified the

response of the second cylinder as a type of buffeting, since it originated from the

wake interference coming from the upstream cylinder.

Brika & Laneville (1999) performed tests with a pair of long cylinders in a wind

tunnel in the range Re = 5000− 27000 with a flexible cylinder positioned from 7 to

25 diameters downstream of a rigid cylinder. The cross-flow response of the second

cylinder is compared with the VIV curve of a single flexible cylinder in Fig. 3.7. A

series of curves for different separations reveal that as x0 increases the interference

effect from the upstream wake is reduced until the response resembles that of a single
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Fig. 3.7: WIV response of a flexible cylinder in the cross-flow direction for various separations. —,
single cylinder. m∗ = 821, ζ = 0.83× 10−4, Re = 5000− 27000. Adapted from Laneville
& Brika (1999).

cylinder without any (or with very little) interference. It is interesting to note that

even between separations 16 and 25 they were still able to identify some change in the

interference effect with the second cylinder positioned so far downstream. Because

their experiments were performed in air the mass ratio (m∗ = 821) is two orders of

magnitude higher that other experiments in water. Yet their damping parameter is

extremely low, resulting in a combined mass-damping of only m∗ζ = 0.068.

Rigid cylinders with 2-dof

Moving from flexible to rigid cylinders we recall experiments performed by

Zdravkovich (1985) with two rigid cylinders free to respond in 2-dof mounted

in a wind tunnel (Re = 1.5× 104 − 9.5× 104, m∗ = 725 and ζ = 0.07). Due to

a very high combined parameter of m∗ζ = 50, Zdravkovich was only able to

observe a build up of oscillations at x0/D = 4.0 for reduced velocities beyond

U/Df0 = 50, asymptotically reaching a maximum of ŷ/D = 1.7 for the last point of

his experiments at around reduced velocity 80. Nevertheless, he has also recorded a

monotonically increasing branch of response that was qualitatively very similar to

those results discussed above.

In a further study of the effect of mass and damping in this type of FIV,

Zdravkovich & Medeiros (1991) performed similar 2-dof tests in a wind tunnel

varying m∗ζ between 6 and 200 (Re = 5× 103 − 1.4× 105). Once more, cross-

flow vibrations presented the same monotonic-asymptotic behaviour with amplitude

53



increasing with reduced velocity. Their results revealed a strong dependency of the

response on m∗ζ, but more importantly showed that very high values of mass-

damping are required to inhibit WIV on the second cylinder. Maximum amplitude

was obtained at a maximum reduced velocity of 120, but in order to reduce the ŷ/D

by half (from 2.2 to 1.1) it was required to increase m∗ζ ten times (from 6.4 to 64).

Rigid cylinders with 1-dof, cross-flow oscillations

Going one step further in the idealisation of the problem we find a few results for rigid

cylinders responding only in 1-dof. Bokaian & Geoola (1984) performed experiments

with two rigid cylinders in tandem in a water channel (Re = 700 − 2000). The

upstream cylinder was fixed while the downstream cylinder was elastically mounted

on air bearings and free to respond only in the cross-flow direction.

They varied centre-to-centre separation in the range x0/D = 1.09− 5.0 covering

both interference regimes (with and without a developed wake in the gap). Results

for amplitude of response versus reduced velocity (with fW being the natural

frequency in still water) are presented in Fig. 3.8(a) for three values of x0. A

vigorous build-up of oscillations with increasing flow speed was observed for all

flow speeds greater than a critical threshold velocity. Such a severe 1-dof vibration

was observed to resemble the response of classical galloping of non-circular bodies;

therefore it was referred to as ‘wake-induced galloping’. They noted that “galloping

carries the strong connotation of a negatively damped single degree of freedom

oscillation, and its use to describe the problem under study is only because of the

many similarities between the two kinds of instability”. However, somewhere else

in their work, Bokaian & Geoola (1984) stated that “whilst some characteristics of

wake-excited galloping were found to be similar to those of galloping of sharp-edged

bodies, others were observed to be fundamentally different”.

The authors concluded that depending on x0, m∗ and ζ the downstream

cylinder “exhibited (i) a vortex-resonance, (ii) or a galloping, (iii) or a combined

vortex-resonance and galloping, (iv) or a separated vortex-resonance and galloping”

response. In Fig. 3.8(a) two examples of these different responses are found with

x0/D = 1.5 presenting a vortex-resonance that is followed by (or combined with) a
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ŷ
/D

x0/D = 1.5

2.0

3.0

W

5

(a)

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U/Df0

ŷ
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Fig. 3.8: Response in the cross-flow direction of the downstream cylinder under WIV. (a) Varying
x0, m∗ = 8.4, ζ = 0.013, Re = 700− 2000 (Bokaian & Geoola, 1984). (b) �, x0/D = 4.75,
m∗ = 3.0, ζ = 0.04, Re = 3×104 (Hover & Triantafyllou, 2001); •, x0/D = 4.0, m∗ = 1.9,
ζ = 0.007, Re = 3000− 13000 (Assi et al., 2006).
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‘galloping response’ at about reduced velocity 2; and x0/D = 2.0 and 3.0 presenting

separated vortex-resonance and ‘galloping’ regimes. A pure vortex-resonance is not

shown in Fig. 3.8(a) but it would be similar to the typical VIV response discussed

above.

Hover & Triantafyllou (2001) measured displacements and forces of rigid

cylinders under WIV in a water towing tank at a constant Reynolds number

(Re = 3× 104). They made use of a closed-loop control system that forces the

oscillation of the cylinder in response to a measured and integrated fluid force. This

way they were able to tune the m-c-k parameters in the equation of motion in order

to generate any artificial combination of f0, m
∗ and ζ. As a result, their curve

presented in Fig. 3.8(b) was obtained for a constant Re = 3× 104 adjusting f0 in

order to vary reduced velocity. The resulting parameter m∗ζ = 0.12 is very close

to m∗ζ = 0.11 obtained by Bokaian & Geoola (1984) in Fig. 3.8(a), however the

difference in the level of amplitude might be related to a difference of one order of

magnitude in Re, as will be discussed later.

For a separation of x0/D = 4.75 Hover & Triantafyllou (2001) observed one

single branch of response that builds up monotonically reaching amplitudes of

[ŷ/D]max = 1.9 for reduced velocities around 17 (their curve represents an average of

the 10% highest peaks of displacement). Although they referred to the branch of high

amplitude as an “upward extension of the frequency lock-in branch” that occurs for

the VIV response of a single cylinder, there is no evidence that the vortex shedding

frequency of either cylinders is synchronised with the frequency of oscillation, on

the contrary, their results reveal that vibrations occur “without any clear signature

of vortex resonance”.

More recently, Assi et al. (2006) performed 1-dof experiments with two rigid

cylinders in a recirculating water channel (Re = 3× 103 − 1.3× 104). Their results,

also presented in Fig. 3.8(b), are comparable to Hover & Triantafyllou (2001) since

they are closer in the Re range, however Assi et al. (2006) employed a very low

damping elastic system resulting in m∗ζ = 0.013 one order of magnitude lower.

Both curves are in good agreement showing an expected branch of high amplitude

oscillation building up as reduced velocity is increased. But the data points from Assi
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et al. (2006) also reveal a smooth hump corresponding to a local vortex-resonance

response around U/Df0 = 6.0.

3.3.2 Mechanisms attempting to explain WIV

After exploring typical responses of the downstream cylinder (flexible, 2-dof rigid,

1-dof rigid) we now turn our attention to attempts offered in the literature to explain

and model the WIV mechanism described above.

From an analytical point of view Parkinson (1989) presents a good outline

about modelling theories for FIV of bluff bodies, while Price (1995) reviews several

theoretical models for fluid-elastic instability of cylinder arrays. Chen (1987)

proposed a generalised theory to model fluid-elastic instabilities of any nature in

arrays of cylinders (as inspired by the heat exchanger industry, with a pair of

cylinders in tandem being a simplification). The latter explains that analytical

models based on motion-dependent fluid forces are divided into three categories:

quasi-static, quasi-steady and unsteady flow theories. While some phenomena can be

modelled successfully by quasi-steady approaches (like classical galloping described

in Chapter 2), others will have to be free from simplifying assumptions and may

require a complete unsteady approach. According to Chen (1987) the fundamental

difference between each approach is summarised below:

• Quasi-static flow theory. The fluid-dynamic characteristics of cylinders

oscillating in a flow are equal at any instant to the characteristics of the same

stationary cylinders in identical configuration. That is to say that the fluid

forces depend only on the position of the bodies. This theory can account only

for fluid-stiffness-controlled instability.

• Quasi-steady flow theory. The fluid-dynamic characteristics of cylinders

moving in a flow are equal at any instant to the characteristics of the same

cylinder moving with constant velocities equal to the actual instantaneous

values. The fluid forces depend on the cylinder configuration and are

proportional to cylinder motion, reflected by changes of amplitude and phase
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of the fluid force with respect to cylinder motion. This theory can account for

fluid-stiffness-controlled or fluid-damping-controlled instabilities.

• Unsteady flow theory. In general, the fluid-force components are nonlinear

functions of the cylinder position, velocity and acceleration. This theory can

account for fluid-stiffness-controlled or fluid-damping-controlled instabilities,

but requires a complete modelling of all unsteady flow phenomena.

As will be seen below, previous works have attempted to apply quasi-steady

models to WIV. To some extent they were successful in applying semi-empirical

methods to predict the critical flow speed for the onset of instabilities — since at

the onset the motion of the cylinder is rather small and simplifying assumptions

still have some value — but once the cylinder builds up considerable oscillations the

theory does not hold true.

Although we could classify all types of instabilities occurring in a wake as WIV

we are seeking to explain the excitation that drives 1-dof oscillations of a cylinder

at large separations, i.e. x0 large enough for a developed wake to form in the gap.

In order to clarify the scope of our work, we find it useful to briefly explain other

mechanisms that are not to be mistaken for the subject of the present study: gap-

flow-switching, for cylinders in close proximity and wake-flutter, for cylinders far

apart but with two degrees of freedom.

Gap-flow-switching

Gap-flow-switching sustains vibrations of cylinders in close proximity. It occurs for

the first regime of flow interference when the upstream shear layers reattach to the

second body and no vortex wake is developed in the gap flow. Therefore, the steady

flow in the gap can switch from one side to the other of the downstream cylinder as

it oscillates across the wake.

Similarly to the jet-switching phenomenon observed for side-by-side cylinders,

the gap-flow-switching mechanism also has a bistable nature (Fig. 3.9). Initially,

when the cylinders are in perfect tandem alignment, there is no mean lift force acting

on the downstream body since both upstream shear layers reattach symmetrically
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Fig. 3.9: Bistable flow pattern due to gap flow switch. Adapted from Zdravkovich (1988).

around the second cylinder. However, if the downstream cylinder is displaced beyond

a critical y0 the shear layers will not be able to remain attached to both sides of

the downstream body and a gap flow will originate. This severe change in the

flow pattern generates an abrupt and strong lift force pointing inwards — the first

region of Cy < −0.6 in Fig. 3.5(a) — forcing the cylinder back to the centreline

(Zdravkovich, 1974).

Theoretically, this restoring force tends to suppress any perturbation. But the

fluid-structure mechanism presents a hysteresis in relation to the movement of the

second body. Zdravkovich (1974) observed that the “gap flow persisted longer than

for stationary cylinders” when the downstream cylinder was displaced towards the

centreline from a staggered initial condition. On the other hand, the gap flow would

start later “as the cylinder passed the critical lateral spacing moving in the opposite

direction”. When the gap flow is intense, a high-lift pressure distribution appears;

when the gap flow is stagnant the magnitude of the lift coefficient is significantly

reduced. So, the feeding force which maintained the large-amplitude mode was found

to be due to a hysteresis effect acting on the timing as the gap flow switches from

one regime to the other (Fig. 3.9), interchanging with irregular intervals. Thus, the

fluid-dynamic forces “are in phase with the elastic forces for a longer time feeding

the large amplitude vibration”. Zdravkovich (1974) offers a convincing explanation

for the excitation of tandem cylinders with close proximity, but he leaves an open

question for the mechanism when cylinders are farther apart.

Gap-flow-switching entirely disrupts the vortex shedding and distorts the near

wake of the upstream cylinder (Zdravkovich, 1988) inhibiting the formation of any

coherent vortex structure in the gap. It also resembles the classical galloping

instability because it requires displacement of the body and happens for 1-dof
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systems. However the fluid force is not in perfect phase with the body’s velocity,

but a hysteresis is present relative to the cylinder position across the centreline of

the wake and depending on the direction of the cylinder motion. For this reason, the

same quasi-steady approach applied for classical galloping mechanism is not valid

in this case.

Ruscheweyh (1983) did not observe self-excited oscillation induced by gap-flow-

switching for a tandem arrangement in his experiments performed in air. However,

the author states that low mass and damping cylinders, as for example in water, can

be excited into large vibrations by the gap-flow-switch mechanism even in tandem

arrangements. Overall, this mechanism only explains how vibrations are sustained

for cylinders with close proximity where a developed wake is not formed. It falls

short of explaining how vibrations can be sustained for larger separations.

Wake-flutter

Wake-flutter is another mechanism that can excite the downstream cylinder into

2-dof vibrations, typically in an elliptical orbit. Consider that the downstream

cylinder is placed further downstream in the wake in an initial staggered condition.

A fully developed wake is now able to originate in the large gap between the bodies,

but wake-flutter can be excited in spite of the unsteadiness of the flow, being

sustained only by the steady fluid forces present in the wake. Fig. 3.10 illustrates

the mechanism.

Force maps presented in Fig. 3.5 (page 49) show that the downstream cylinder

will be subjected to changes in the steady fluid force for considerably large

separations. A reduced drag force has minimum values on the centreline of the

wake; and a steady lift force develops maximum values close to the wake interference

boundary. If the downstream cylinder is able to respond in two degrees of freedom

following the elliptical orbit described in Fig. 3.10 it will move across different

gradients of steady lift and drag. A counter-clockwise orbit on that side of the

wake extracts energy from the flow to sustain the oscillations. Areas Wy and Wx

greater than zero in the force-displacement diagrams mean positive work of the lift

and drag forces in one cycle.
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Fig. 3.10: Wake flutter of a cylinder with x and y degrees of freedom in the wake of another.
Adapted from Naudascher & Rockwell (1994).

This quasi-steady approach does not take into account the vortex wake from

upstream, but only the steady effect of lift and drag. Also, this mechanism would

not excite systems with 1-dof, since it requires an orbit in x and y for a positive

input of energy. Naudascher & Rockwell (1994) comments that wake-flutter, like

other coupled instabilities, occurs only if the natural frequencies in the x and y

directions are reasonably close. This mechanism was called ‘wake galloping’ by

Zdravkovich (1997) and Blevins (1990), but we prefer to stick to the terminology

‘wake-flutter’ since it requires response in 2-dof to be sustained.

Elliptical vibrations can happen in different regions of the wake wherever the

steady velocity profile is favourable. The amplitude of the oscillation is directly

related to the intensity of the lift and drag gradient in the wake. Therefore

oscillations are reduced for larger separations as the steady force profiles get

attenuated.

Bokaian & Geoola (1984) noted that the fluid-elastic instability reported in their

work (Fig. 3.8(a)) must not be mistaken by the wake flutter mechanism described

above, since their experiment presented only a single degree of freedom. This is also

the case for the present work. As a conclusion, this mechanism does not explain

61



why a cylinder with 1-dof responds with severe vibration when it is immersed in the

wake of another bluff body.

3.3.3 Mechanisms for 1-dof and large separations

Several works proposed possible explanations for the origin of WIV but a complete

and convincing theory is yet to be produced. Following the line of thought developed

by Zdravkovich (1988) we will introduce his own understanding of the problem

followed by a few others. Most of them are presented in review papers in the

literature (Price, 1976; Zdravkovich, 1977; Chen, 1986; Zdravkovich, 1988; Paidoussis

& Price, 1988; Moretti, 1993; Price, 1995), but it is necessary to analyse a few main

points here if we want to develop a comprehensive explanation later.

Wake-displacement

In between the gap-flow-switching (for close proximity) and wake-flutter (for 2-

dof systems) Zdravkovich (1977) pushed further the quasi-steady models in order

to explain 1-dof vibrations in the wake interference region proposing the wake-

displacement mechanism. It follows the same idea as the gap-flow-switching

mechanism, but differs from it in the sense that it does not disrupt the vortex

shedding of the upstream cylinder. He suggested that both mechanisms are

analogous in the fact that they displace the wake coming from upstream. “The

downstream cylinder is not immersed in the upstream cylinder wake but displaces

it instead” (Zdravkovich, 2003, his emphasis), deflecting more flow towards the wake

centreline and inducing a lift force towards the centreline around the wake boundary.

The displacement of the wake would be the cause of the steady lift force for larger

separations shown in Fig. 3.5(a). But in order for vibrations to be sustained in this

steady force field a hysteresis effect would have to be present as the cylinder moves

across the wake “switching or dislocating the developed wake”. (Zdravkovich, 1988).

This effect would generate a phase lag between the fluid force and the displacement

of the cylinder as it crosses the centreline. Bokaian & Geoola (1985) also held to

this mechanism to explain their results.
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The concept of wake-displacement may be correct but it needs to be supported

by evidence on how the downstream cylinder actually displaces the wake. It may

be reasonable to think that the movement of the downstream cylinder is able to

deflect the steady flow in a small gap (as in gap-flow-switching). However, for

larger separations where a fully developed wake is present, the displacement of the

downstream cylinder may not have such a strong effect on the flow in the gap. Of

course it will interfere and interact with vortices as they approach the second body,

but the shedding mechanism — the actual flow regime — is not altered by the

presence or movement of the downstream cylinder at large x0.

Wake-buoyancy

Maekawa (1964) attributed the excitation mechanism to a buoyancy effect. The

static pressure is a minimum at the centreline of the wake; hence the pressure

gradient across the wake generates a buoyancy force towards the centreline.

However, later works (Best & Cook, 1967; Wardlaw & Watts, 1974) integrated the

pressure field around the second cylinder to show that only 30-50% of the total lift

could be attributed to a buoyancy effect. In addition, this explanation does not

deal with the need for a hysteresis effect (or phase lag) to exist in order to sustain

vibrations in a symmetrical pressure field.

Turbulent transition in one of the shear layer

Maekawa (1964) also suggests that turbulence generated by the wake may affect

the separation on the internal side of the cylinder, changing the symmetry of the

pressure field around the second body. However this phenomenon was not confirmed

by experiments that measured turbulence intensity and transition in the shear layers

(Zdravkovich, 2003). Price (1976) notes that although the variation of turbulence

intensity across the wake is large with maximum intensity on the centreline the scale

of turbulence in a wake is dominated by large vortices being shed on the upstream

cylinder. “Whether turbulence at this scale can affect transition [in the boundary

layer] is a matter for doubt.”
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Resolved drag

Mair & Maull (1971) proposed that the side force was caused by a type of wake

entrainment mechanism that generates an inclined free stream velocity approaching

the second body. The lift force towards the centreline would be due to resolved drag

as the second body faces entrained flow from outside towards the centreline of the

wake.

Price (1976) measured the pressure distribution around the downstream cylinder

in different positions across the wake. As expected, the pressure distribution is

symmetric when the cylinder is placed on the centreline (as it is symmetric for a

cylinder in a free stream), but as the cylinder moves across the wake the position

of the frontal stagnation point rotates around the cylinder. Also, the points of

maximum negative pressure (just before separation) rotates further away from the

stagnation point (i.e. separation is delayed) as the cylinder moves across the wake

approaching the centreline (hence resulting in less drag as well). In general, the

suction of the inner wall was greater than that on the outer wall as would be expected

to produce a lift force towards the centreline.

Analysing pressure distribution plots, “it seems that the lift force is mainly due

to the asymmetry of the base pressure region, with the reduction in drag appearing

to be mainly due to the reduction of the front positive pressure region” (Price,

1976). Assuming that the rotation angle indicates the incidence velocity direction,

and calculating the drag from the integration of the pressure distribution around

the cylinder, Price estimated that the lift force due to resolved drag is only 25%

of the total lift force measure on the cylinder. When he repeated the experiment

with a perforated cylinder downstream (so that no component due to circulation or

buoyancy would affect the body) the resolved drag contributed only 10% of the total

measured lift. His conclusion was that the total lift force could not be attributed

only to resolved drag.
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Circulation

Rawlins (after Price, 1976) employed an improved inviscid flow theory and ascribed

the lift force to circulation around the cylinder. He stated that because of

variations of velocity and turbulence across the wake each boundary layer of the

downstream cylinder feeds different amounts of vorticity into their associated shear

layers. Applying Kelvin’s circulation theorem he concluded that a circulation is

built up around the cylinder until rates at which vorticity is discharged from the

two boundary layers are equal. This circulation would generate lift towards the

centreline.

Rawlins’ lift curves have the same general shape as the lift profile measured

experimentally (Fig. 3.5(a) for example), but do not obtain the required magnitude

generating only 75% of the lift measured at the maximum position. Hence it seems

that Rawlins’ expression cannot satisfactorily explain the origin of the inward lift

force. Price (1976) comments that “for a mechanism that is so obviously dependent

on the viscous nature of the flow, a potential-flow solution, however ingenious, is

unlikely to succeed”.

Conclusion

Several attempts to explain the fluid-mechanics of the WIV excitation were

discussed. Probably the wake-displacement mechanism proposed by Zdravkovich

(1977) is the most convincing phenomenological explanation so far (assuming that

a phase lag between displacement and lift exists). But it still lacks experimental

verification and analytical modelling. In the present work we aim to provide new

insights about the origin of the inward, steady lift force acting on the downstream

cylinder attempting to explain WIV.

3.3.4 Improved quasi-steady models

Quasi-steady theories have been applied in the study of fluid-elasticity and fluid-

induced vibration for some time (Parkinson, 1971; Blevins, 1990). As explained by

Chen (1987) this theory allows the motion-induced fluid forces on an oscillating body
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to be estimated by using static fluid force coefficients determined on a stationary

body. “It is well accepted, and physically reasonable, that this assumption is valid

for high values of reduced flow velocity” (Granger & Paidoussis, 1996).

However, it is also known that a strict quasi-steady theory is not able to predict

the fluid-elastic instability of the downstream cylinder if it is only free to oscillate

in 1-dof. Price (1984) improved the quasi-steady model by inserting a time delay

between the cylinder displacement and the fluid force. This phase lag was intended

to account for a possible flow retardation generated in the gap flow between the pair

of cylinders, however the physical origin of this effect still remains unclear. Granger

& Paidoussis (1996) proposed yet another improvement of the quasi-steady theory

employed by Price (1984) with the aim to model the most relevant unsteady effects

neglected by the quasi-steady approach. In essence their model, referred to as quasi-

unsteady, incorporates a memory effect into the same time delay idea, “the physical

origin of which arises from the diffusion-convection process of the vorticity induced

by successive changes in the velocity of the body”.

Paidoussis et al. (1984) employed potential-flow theory to investigate fluid-elastic

instability of an array of cylinders. Although they were not calculating any viscous

forces in their model itself, they had to include a phase lag effect in the fluid force in

order to generate any oscillatory instability. Probably the most intuitive explanation

for the existence of a phase lag on the fluid force was offered by Paidoussis & Price

(1988) who attributed this effect to a time delay associated with the reorganisation of

the viscous wake flow as the cylinder is displaced. Paidoussis et al. (1984) concluded

that “if viscous effects are neglected altogether, then the only form of instability

possible is divergence, which is a static, non-oscillatory instability.”

Conclusion

Each of the improved quasi-steady models gave better comparisons to experimental

data than their precursors. They all agree that a phase lag between the cylinder

displacement and the fluid force must be implemented into quasi-steady models in

order to account for a physical time delay in the flow-structure interaction. Yet

a precise explanation about the origin and effects of this time delay has not been
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produced. In the present work we aim to bring new light over that matter as well.

We sum up this section quoting Price’s (1976) conclusion that “none of the

[suggested mechanisms] gives a satisfactory explanation for the origin of the lift force.

However, several interesting points were noted; for instance the dependence of the

lift profiles for the [downstream] cylinder on its own characteristics in the wake and

not particularly on the wake characteristics.” Consequently, a complete unsteady

theory may be required to correctly model this type of fluid-elastic phenomenon.
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Chapter 4

Experimental set-up

Experiments in the present study were performed through 15 sessions in the

Hydrodynamics Laboratory of the Department of Aeronautics at Imperial College

London between 2006 and 2009. This chapter presents a description of the apparatus

employed in the experiments.

4.1 Flow facility

Tests were carried out in a recirculating water channel with a test section 0.6m

wide, 0.7m deep and 8.4m long, as seen in Fig. 4.1. Sidewalls and bottom of the

section were made of glass mounted on a steel frame, allowing access through the

free surface and a complete view of the models for flow visualisation purposes. A

carriage, installed at the top of the structure, covered the whole length of the test

section and could be used as a positioning system or to tow models up to speeds of

1m/s. This is particularly useful for test conditions with very low Reynolds number

or more complex oscillatory flows.

The water flow was driven by a single propeller through a pipe system before

reaching the settling chamber. A wire screen and a honeycomb were employed

to stabilise the flow before a three-dimensional contraction with ratio of 4.5:1. The

accelerated flow then enters a long parallel test section which ends in a sink directing

the flow to the propeller, closing the circuit. The flow speed was continuously

variable by controlling the rotation of the propeller. An electromagnetic flow meter



Fig. 4.1: Recirculating water channel at Imperial College London.

installed just before the settling chamber provided a reading of the instantaneous

flow rate, which was divided by the area of the test section yielding the value of U .

4.1.1 Flow quality

All experiments presented in this work were conducted at the first third of the test

section, within the first 2m downstream of the end of the contraction. At this

location the boundary layers developed on the sidewalls and bottom of the section

were estimated to be approximately 20mm thick for the maximum flow speed of

0.6m/s (according to formulation of Schlichting, 2000).

The velocity profile across the working section was mapped using a hot-film

probe. Local velocity fluctuation u was acquired at 42 stations across the area

of the section for four values of U within the range of study. In Fig. 4.2(a) we

see the map obtained for the most irregular profile measured for ReW = 2.3× 105

(Reynolds number based on the width of the test section). Velocity contours at this

cross section show a smooth gradient with lower velocities from the middle-height

towards the free surface. This feature is well known to happen in water channels
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with free surface and there are a few techniques known to artificially accelerate

the surface flow (SNAJ, 1986), although none was employed in this study. On the

other hand, there was a region of accelerate flow close to the bottom of the section

showing a velocity increase of up to 25% of U . The effect of boundary layers was

not captured by this mapping since the probe was always positioned 150mm away

from the walls.

Free stream turbulence intensity calculated as

TI =

√
u2

U
, (4.1)

where u is the streamwise fluctuating velocity, was also mapped across the section

for the same four values of U and one of the results is shown in Fig. 4.2(b). A spatial

average of the 42 stations results in TI = 3.1% for the plotted cross section. There

were two main regions of higher free stream turbulence located at the bottom and

on the right-hand side of the test section. Both reached levels of 4.5% but still the

deviation from TI remains within 20% for the whole of the cross section.

In order to have an idea of the variation of TI throughout the whole range of

flow speed one measurement was performed with the hot-film probe positioned at

the centre of the test section varying U up to 0.6m/s. The result presented in Fig. 4.3

shows that the free stream in the section begins with a level of about TI ≈ 5% for

lower flow speeds, but the turbulence intensity quickly falls to levels around 3% for

most of the range of U required for the experiments. In fact, the average value

of turbulence intensity for ReW = 0.5× 105 − 3.0× 105 at the centre of the section

was TI = (3.1± 0.7)%. We suggest that the flow quality in the channel could be

substantially enhanced by installing a set of screens downstream of the honeycomb,

reducing free stream turbulence, as well as improving the velocity profile.

Although the uncertainty of the flow meter was very low (around 1%), the

variance in the velocity profile, as exemplified in Fig. 4.2(a), raises the uncertainty

level of U to about 13% for the most irregular profile, varying with Re. Nevertheless,

the actual flow quality described above was proved to be adequate to perform our

FIV tests. This was validated with a good agreement between our preliminary VIV

results and other experiments presented in the literature (please refer to Chapter 5).
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Bokaian & Geoola (1984) performed experiments with a pair of cylinders in a water

channel and found no significant difference in their results for two levels of free

stream turbulence intensity of 6.5% and 11.9%. Also, their velocity profile showed

a 7% variation around the mean free stream velocity.

4.2 Circular cylinder models

Several circular cylinder models were constructed for the experiments. The pair

mainly employed throughout the present work was made from a 50mm diameter

acrylic tube, giving a maximum Reynolds number of approximately 30000, based

on cylinder diameter D, at U = 0.6m/s. With a wet-length of L = 650mm (total

length below water level H) the resulting aspect ratio of the model was L/D = 13.

Cylinders were hollow and filled with air in order to keep the mass as low as possible.

It was judged preferable not to install end plates on the cylinder in order not to

increase the fluid damping in the system. Instead it was chosen to have the models

terminating as close as possible to the glass floor of the test section. In a similar

way the disturbances due to surface waves were considered to be negligible and the

models were not fitted with end plates at the top either.

One single cylinder occupies 8.3% of the total area of the test section. If

one cylinder is oscillating behind the other, the maximum projected area of both

cylinders would result in a blockage ratio of 16.6% if it is displaced by more than

1D. Brankovic (2004) performed VIV tests on a single cylinder in the same water

channel with three ratios of blockage: 11.3%, 13.6% and 17%. She concluded that

although the maximum amplitude of oscillation decreased slightly for higher blockage

ratios the results remained qualitatively the same, meaning that the hydrodynamic

mechanism did not change for the three cases studied.

4.3 One-degree-of-freedom rig

The upstream cylinder was rigidly attached to the structure of the channel

preventing displacements in any direction, while the downstream cylinder was fixed
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Fig. 4.4: Arrangement of a pair of cylinders. The static upstream cylinder may be removed during
experiments with a single cylinder.

from its upper end to a one-degree-of-freedom elastic mounting (named the 1-dof

rig). The initial streamwise and cross-flow separations between cylinders (x0 and y0

in Fig. 4.4) could be varied by changing the position of the upstream model, so that

the downstream cylinder always oscillated around the centreline of the test section.

For most of the experiments performed in the present work, both cylinders were

initially aligned with the free stream direction (y0 = 0), arranged in what is called

the tandem configuration.

Fig. 4.5 shows a schematic representation of the 1-dof rig on which the

downstream cylinder was mounted and helps in describing the operation of the

system. Both models were aligned in the vertical direction passing through the free

water surface down to almost the full depth of the section. The downstream cylinder

was mounted such that there was a 2mm gap between the lower end of the cylinder

and the glass floor of the test section. The support system was firmly installed on

the channel structure and the sliding cylindrical guides were free to move in the

transverse direction defined by the y-axis. A pair of tension springs connecting the

moving base to the fixed supports provided the restoration force of the system.

A pair of sliding guides was made out of a carbon fibre tube with a smooth

finish and ran through a pair of air bearings spanning the width of the section.

They were connected at mid-length by a light, stiff table machined out of a block of

aluminium, from which the cylinder was firmly attached. A rigid load cell (described
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Fig. 4.5: Schematic representation of the 1-dof rig holding the downstream cylinder. The free
stream flows out of the page in the x-axis direction.

later) connected the moving table to the top end of the cylinder and was adjusted

to measure instantaneous fluid forces acting on the cylinder in the cross-flow and

streamwise directions (lift and drag, respectively). An optical positioning sensor was

installed to measure the y-displacement of the cylinder without introducing extra

friction to damp the oscillations.

This configuration proved to combine high stiffness with low mass and damping,

solving the structural problem observed by Assi et al. (2006) — who employed

a flexing-blade rig — and pushing the reduced velocity range to higher limits.

The whole of the experimental apparatus was manufactured in the workshop of

the Department of Aeronautics and a photograph of the rig installed on the water

channel is shown in Fig. 4.6.

Completing the instrumentation, a pair of hot-film probes was employed to

measure velocity fluctuations in the gap between the cylinders and in the developed

wake downstream of the second cylinder (see Fig. 4.4). A Dantec particle-image

velocimetry (PIV) system was employed to map velocity fields. A laser sheet entered

the section through one of the sidewalls illuminating the flow at the mid-height

of the section. A digital camera was positioned underneath the channel and the
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Fig. 4.6: Photograph of the 1-dof rig mounted on top of the water channel. The cylinder is seen
submerged in water.

illuminated plane was visualised through the glass floor avoiding any interference

caused by the free surface. Flow visualisation was also carried out using the same

laser to illuminate fluorescent dye or hydrogen bubbles.

4.3.1 Structural mass, natural frequency and damping

As discussed in Chapter 2, the dynamic response of an FIV oscillator is extremely

sensitive to the structural characteristics of the system; therefore extra care was

taken to determine the precise value of natural frequency, mass and damping of the

structure.

A pair of steel coil springs was installed between the moving table and the rigid

supports in order to provide the structural restoration force of the oscillator. The

spring stiffness (k) combined with the mass of all oscillating parts (m) results in

the undamped natural frequency of oscillation f0, already defined in Eq. 2.6. More

than one set of springs could be employed resulting in an array of possible natural

frequencies. However, most of the experiments were performed with one main pair
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of springs, which provided the system with a natural frequency of oscillation of

f0 = 0.30Hz, determined by performing a series of free decay tests in air without

any extra mass added to the rig. The other sets of springs gave values of f0 between

0.1 and 0.5Hz for the same conditions. With the main set of springs it was possible

to vary reduced velocity to a maximum of U/Df0 = 40 when U was increased up to

0.6m/s. The minimum flow speed that the channel could run at was U = 0.03m/s,

resulting in the lower limit of U/Df0 = 2.0.

All moving parts of the elastic base contributed to the effective mass oscillating

along with the cylinder. Therefore, m could be altered by adding extra mass on top

of the rig, but not to the cylinder itself. This way the actual mass of the cylinder

was always kept constant while the mass ratio of the system (m∗) could be varied as

required (see Eq. 2.10). For most of the experiments, when the lightest configuration

was used, the mass ratio was found to be m∗ = 2.6 for a 50mm-diameter cylinder.

The structural damping of the system was mainly caused by friction between

the sliding guides and the air bearings. As explained before, the main principle

was to keep the damping as low as possible and increase it in controlled steps if

necessary. The air bearings proved to be an efficient way to reduce damping without

compromising the stiffness of the structure, especially in resisting drag loads for

higher flow speeds. By carrying out free decay tests in air it was possible to estimate

the structural damping of the system for each configuration of mass and springs.

Most of the experiments were conducted with m∗ = 2.6 and f0 = 0.30Hz and the

structural damping measured for this configuration was ζ = 0.7%, calculated as a

percentage of the critical damping as defined in Eq. 2.7. Therefore, the product

m∗ζ = 0.018 for the majority of the experiments.

However, at times it was required to vary the parameter m∗ζ or one of its terms

independently. As mentioned before, extra mass could be added to the rig in order

to increase m∗, but the damping factor ζ could also be varied by adding artificial

damping to the system. A small reservoir filled with thick machine oil was installed

along the rig and a small arm holding a steel screen was immersed in the oil. The

amount of damping was varied by changing the height of the screen submerged in

oil. The new value for ζ was then measured with free decay tests in air. This
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method proved to give good control of the damping level enabling small variations

of ζ between 0.7% and 20% of the critical damping.

4.3.2 Load cell

A load cell was attached between the model and the table to measure instantaneous

and time-averaged hydrodynamic forces acting on the cylinder. It consisted of

two independent load cells machined out of one block of a hard aluminium alloy.

Each cell was perpendicular to each other in order to measure components of the

hydrodynamic force in the streamwise and cross-flow directions.

Fig. 4.7 illustrates the concept of the load cell. Two small webs of about

0.5mm in thickness were machined and instrumented with four strain gauges each.

Each set of four strain gauges was wired to form a complete Wheatstone bridge,

which was connected to a power supply and signal amplifier. This configuration

permitted each individual cell to be insensitive to moments but responsive only to

the force component acting in its direction. The load cell was also insensitive to

force variations in the vertical axis, such as the weight or buoyancy of the model.

Each cell was calibrated individually and there was observed to be no significant

cross-talk between them. The load cell was designed to measure a load of up to 50N

with an uncertainty of 1% in each direction.

Fig. 4.8 presents the result of a computational study developed during the design

process. Colour contours show a concentration of strain on one of the webs when

a nominal load was applied in the corresponding direction. The bright red area

indicates where the strain gauges should be placed. This was used to estimate

not only the necessary thickness of the webs to give enough resolution to the

measurements, but also to evaluate the critical load above which the webs would

fracture.

The fluid force projected in the streamwise direction (drag) could be measured

straight away from the load cell, since the cylinder was not allowed to move in the x-

axis. However, the cross-flow component needed to be corrected in order to remove

the inertia force of the cylinder also captured by the cell. The inertia term is given
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Fig. 4.7: Photograph of the load cell showing a pair of strain gauges installed on one of the webs.

Fig. 4.8: Finite element structural analysis. Colour contours represent strain magnitude and show
strain concentration (in red) on the bottom web.
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by the acceleration of the cylinder times the mass of the structure hanging below the

load cell. Since extra weight was added on top of the table and never below the load

cell, the mass hanging on the load cell was practically that of the cylinder and its

structural components (mcyl). Hence, the fluid force acting on the cylinder can be

calculated by subtracting the inertia term from the actual force signal measured by

the load cell (Fcell). Yet, the load cell measures the reaction force and the direction

of the fluid force has to be inverted, resulting in

Fy = ÿmcyl − Fcell. (4.2)

The upstream cylinder was also instrumented with a similar load cell allowing for

measurements of instantaneous lift. In that case no force correction was necessary

since the body was held static at all times.

4.4 Two-degree-of-freedom rig

In addition to the 1-dof rig presented above, a second rig with 2 degrees of freedom

(2-dof rig) was also built during the present study and was employed to investigate

the effectiveness of devices to suppress FIV. Results obtained with the 2-dof rig are

only presented in Chapter 8.

The 2-dof rig, allowed the cylinder to freely respond in both transverse and in-line

directions. A schematic representation is shown in Fig. 4.9 while a photograph of

the 2-dof rig during experiments of VIV of a single cylinder is presented in Fig. 4.10.

The cylinder model was mounted at the lower end of a long carbon fibre tube which

formed the arm of a rigid pendulum. The top end of the arm was connected to a

universal joint fixed at the ceiling of the laboratory so that the cylinder model was

free to oscillate in any direction in a pendulum motion. The distance between the

bottom of the cylinder and the pivoting point of the universal joint was 2800mm.

Two independent optical sensors were employed to measure displacements in the x

and y-directions. It should be noted that for a displacement equal to 1 diameter

the inclination angle of the cylinder was only just over 1◦ from the vertical. All

displacement amplitudes presented for 2-dof measurements are for a location at the
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Fig. 4.9: Schematic representation of the 2-dof rig holding the downstream cylinder. The free
stream flows in the x-axis direction.
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Fig. 4.10: Photograph of the 2-dof rig. The cylinder is seen submerged in water. This photograph
does not show the final configuration of the 2-dof rig; the in-line springs are not mounted
on long wires yet.

mid-length of the model.

Two pairs of coil springs were installed in the x and y-axes allowing the setting

of different natural frequencies in each direction. Therefore, we define two natural

frequencies f0y and f0x corresponding to the cross-flow and streamwise direction

for 2-dof experiments. Although the cylinder was initially aligned in the vertical

position, in flowing water the mean drag displaced the cylinder from its original

location. To counteract this effect, the in-line pair of springs was attached to a

frame that could be moved back and forth in the direction of the flow. For each

flow speed there was a position of the frame that maintained the mean position of

the cylinder in the vertical direction, balancing the drag force with a displacement

of the springs.

Using two pairs of springs perpendicular to each other resulted in nonlinear

spring constants in the transverse and in-line directions. Movement in the transverse

direction will cause a lateral spring deflection in the in-line direction and vice versa.
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This nonlinearity was minimised by making the springs as long as possible, hence

the in-line springs were installed at the end of 4m-long wires fixed at the extremities

of the frame.

It is known that during the cycle of vortex shedding from bluff bodies the

fluctuation of drag has double the frequency of the fluctuation of lift. Hence a

particularly severe vibration might be expected to occur if the hydrodynamic forces

in both directions could be in resonance with both in-line and transverse natural

frequencies at the same time. For this reason, we set the in-line natural frequency

f0x to be close to twice the transverse f0y by adjusting the stiffness of both pairs of

springs.

Because the carbon fibre pendulum was lighter than the oscillating parts of the

1-dof rig, the mass parameter obtained for the 2-dof rig could reach a value below

m∗ = 2.6. The structural damping of the 2-dof rig was ζ = 0.3%, approximately the

same for both principal directions of motion and lower than the one measured for

the 1-dof rig. Again, values for f0x , f0y and ζ were determined by measuring free

oscillations in air in both directions.

The same load cell described above could be installed in the 2-dof rig in order

to measure instantaneous lift and drag acting on the cylinder. However, since the

model presented displacements in both directions, the inertia correction presented

for the lift force in Eq. 4.2 had to be employed also for the unsteady drag force

considering the acceleration of the body in the in-line direction.
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Chapter 5

WIV response of the downstream

cylinder

This chapter presents the main experimental results obtained in the present work.

It starts with a brief validation of the experimental methodology by comparing

the VIV response of a single cylinder with other results found in the literature.

Afterwards the WIV response of the downstream cylinder is characterised in terms

of displacement amplitude and frequency of oscillation. Instantaneous fluid force

measurements and decomposition are also discussed.

5.1 VIV response of a single cylinder

A preliminary experiment was performed with a single cylinder free to oscillate in

1-dof in a uniform flow to serve as reference for comparison and validation of the

experimental methodology. The same elastically mounted cylinder was employed

in experiments with a single or a pair of cylinders; therefore the experimental

parameters are exactly the same for both cases allowing direct comparison between

the results.



5.1.1 Displacement and frequency of oscillation

Throughout the study, cylinder displacement amplitude (ŷ) was found by measuring

the root mean square value of response and multiplying by
√

2. Such a harmonic

amplitude assumption is likely to give an underestimation of maximum response

but was judged to be perfectly acceptable for assessing the average amplitude of

response for many cycles of steady state oscillations. An alternative method was

to measure the amplitude of individual peaks of displacement in order to estimate

an average value, but this was found to give very similar results as the harmonic

amplitude mentioned above, thus proving that a sinusoidal approximation for the

response is indeed very reasonable. The same procedure was employed to determine

the magnitude of all other fluctuating variables, such as Ĉy and Ĉx.

Fig. 5.1 presents experimental results for the dynamic response of a cylinder

under VIV in terms of displacement amplitude, frequency of oscillation and phase

angle φ. Since U is increased in order to vary the reduced velocity, Re also varies

along the reduced velocity axis and is plotted as a reference in a parallel axis. In

the middle graph of f/f0 a variation from blue to red represents higher peaks in the

normalised power spectral density (PSD) of the frequency of oscillation (please refer

to Appendix A for an explanation about how PSD plots were compiled).

In the ŷ curve (top graph) it is possible to identify the typical three branches of

response discussed by Williamson & Govardhan (2004). An initial branch showing

a build up of response at lower reduced velocities is clearly detached from the upper

branch, the latter being characterised by a peak of ŷ/D = 0.8 just before a reduced

velocity of 4. At this point the frequency of oscillation crosses the natural frequency

of oscillation in water, which is identified by the dashed line fW/f0 in the middle

graph. At this same point, the vortex-force phase angle (φV ) goes through an almost

180◦ shift associated with the transition in the vortex shedding mode, as shown in

the bottom graph.

A lower branch with predominant amplitude of about ŷ/D = 0.5 smoothly

follows the upper branch after a reduced velocity of 5, when the frequency of

oscillation rises above the natural frequency in air (f/f0 = 1.0). At this reduced
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Fig. 5.1: VIV response of a single cylinder free to oscillate in the cross-flow direction. Top:
displacement; middle: normalised PSD of frequency of oscillation; bottom: phase angles
φ and φV . Please refer to Appendix A.
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Fig. 5.2: Three examples of VIV time series. Left column: displacement signal for around 50 cycles
of oscillation. Right column: superimposed plots of similar cycles. ŷ in blue and Cy in
red with average cycle in black. Top: upper branch; middle: transition between branches;
bottom: lower branch.

velocity the phase angle of the total lift force (φ) experiences a shift of almost 180◦.

The frequency of oscillation remains at a roughly constant level until the end of

this synchronisation range, up to a reduced velocity of 10, when the amplitude of

oscillation drops to levels below ŷ/D = 0.1. These first results are in very good

agreement with those presented by Govardhan & Williamson (2000) and discussed

in Chapter 2.

5.1.2 Branches and mode transitions

Time series of ŷ for about 50 cycles of oscillation are plotted for different reduced

velocities in the left-hand side graphs of Fig. 5.2 (T being the period of an average

cycle). The first data-set (U/Df0 = 4.0) is collected from a point in the upper branch

86



of VIV; the second (U/Df0 = 5.7) is in the transition between the upper to the lower

branch; and the third (U/Df0 = 7.9) is in the lower branch. In the first and third

series it is possible to note that the envelope of ŷ is very well behaved, i.e. the peak

amplitude has small variations in time. But for the series in the transition between

branches the peak amplitude shows more variations from one cycle to another and

the envelope of amplitude is more irregular than the other two.

The plots on the right compare several cycles of ŷ and Cy superimposed in one

figure, each representing around 20% of the total number of acquired cycles with

displacement around the average ŷ/D. Again it is evident that the deviation of ŷ

from the mean curve (continuous line in black) is accentuated during the transition

between branches. Looking at Cy curves of Fig. 5.2 we observe that although the

magnitude of lift shows considerable variations the phase angle between cycles is

reasonably constant in the upper and lower branches. Cy is clearly almost in phase

with ŷ in the upper branch and in antiphase in the lower. However, the behaviour of

Cy for only a few cycles of oscillation is enough to show that a constant phase angle

φ is not observed during the transition between the upper to the lower branch. A

disarray of red lines in the plot on the right reveals that both magnitude and phase

of lift are changing during the transition between modes.

Fig. 5.3 reveals more details of the phase transition associated with the modes

of vortex shedding for the same data-sets illustrated in Fig. 5.2. The instantaneous

behaviour of φ at different reduced velocities was analysed by employing a Hilbert

analytical transform to the signal, as described in Hahn (1996) and Khalak &

Williamson (1999). The value of φ in the initial and upper branches remains very

close to 0◦ (top left graph, U/Df0 = 4.0). The graph on the right illustrates the same

behaviour by plotting Cy versus ŷ. A Lissajous figure that resembles a straight line

inclined towards the first and third quadrants reveals that both signals have the

same dominant frequency and are almost in phase.

The opposite is observed for U/Df0 = 7.9. φ remains very close to 180◦ for

the whole time series and the Lissajous figure with opposite inclination indicates

an almost anti-phase relationship between lift and displacement. However, the

transition from the upper to the lower branch does not occur all of a sudden, but
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Fig. 5.3: Three examples of VIV phase angles. Left column: instantaneous phase angle φ for
around 50 cycles of oscillation. Right column: Lissajous figures of Cy versus ŷ. Top:
upper branch; middle: transition between branches; bottom: lower branch.

shows an intermittent and gradual behaviour. φ alternates between 0◦ and 180◦ as

the flow switches between the first and the second sub-regimes of the 2P mode of

vortex shedding (Williamson & Govardhan, 2004).

The transition occurs as the number of cycles with φ = 180◦ is gradually

increased as VIV moves from the upper to the lower branch. If the time series is long

enough to minimise statistical errors it will produce a smooth transition between

the upper and lower branches as shown in the displacement plot of Fig. 5.1. But this

does not mean that a real intermediate phase angle is present. The instantaneous

value of φ and the Lissajous figure for the example given in Fig. 5.3 (middle) reveals

that an average value for φ cannot be accurately attributed to represent the whole

series. Therefore the point around φ = 80◦ in Fig. 5.1 must be understood as an

average of the phase angle that is intermittently switching between 0◦ and 180◦.
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Fig. 5.4: Top: normalised PSD of velocity fluctuation (u) in the wake of a single cylinder. Please
refer to Appendix A. Bottom: Decomposition of lift coefficient into potential and vortex
components.

5.1.3 Fluid force decomposition

The top graph in Fig. 5.4 presents the frequency spectrum of velocity fluctuation (u)

measured with a hot-film probe at a station in the near wake of the cylinder. This

represents the shedding frequency fs plotted against reduced velocity in a similar

way to the frequency graph of Fig. 5.1. As the flow speed is increased from rest the

cylinder, which is still stationary, sheds vortices following the Strouhal law. The

inclined dashed line corresponds to a Strouhal number of 0.2 for a static cylinder,

which is closely followed by fs before and after the synchronisation range.

In the lock-in range the vortex shedding mechanism shows a distinct behaviour.

As the cylinder builds up amplitude in the initial branch the displacement of the

body interferes with its own process of vortex formation, fs departs from the

Strouhal line and is locked by f within 3 < U/Df0 < 10. But as reduced velocity

is further increased both frequencies become too far apart for this fluid-structure
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mechanism to be sustained, fs and f decouple and an almost stationary cylinder

allows fs to return to the line of St = 0.2 marking the end of the synchronisation

range.

The bottom graph in Fig. 5.4 shows the behaviour of fluid force versus reduced

velocity. Ĉy was directly measured with the load cell and ĈyP
and ĈyV

were

calculated from Eqs. 2.17 and 2.18 (page 35). Ĉy shows a characteristic curve that

reaches its maximum value at the resonance but abruptly falls to its minimum at

the end of the upper branch. ĈyV
, which quantifies the actual force from the vortices

in the flow, is the component associated with the excitation and shows a distinct

jump in the upper branch when f is between fW and f0. This corresponds to the

transition from the 2S to 2P mode and shows that a change in the wake mode has

a significant effect in sustaining high amplitudes of vibration. ĈyP
only quantifies

the inertia force associated with the product of the mass of displaced water and the

acceleration of the body.

Force measurements and decomposition are in good agreement with results

presented by Khalak & Williamson (1999). In addition, PIV measurements (not

presented in this text for brevity) also found good agreement with their work in

identifying the correct vortex shedding modes in the wake.

5.2 Overview of the WIV response

Since WIV has its origin in the wake developed in the gap between the cylinders,

it is expected that the centre-to-centre separation between a tandem pair has some

effect on the response of the downstream body. This is clearly confirmed in Fig. 5.5

showing that the response curve has indeed a strong dependency on x0. In this plot

there are only curves for WIV in the second regime of wake interference, i.e. when a

fully developed vortex wake is able to form in the gap between the bodies, including

the smallest separation of x0/D = 4.0. Results are in good qualitative agreement

with Laneville & Brika (1999) presented in Fig. 3.7 (page 53), even though they

have performed test with flexible cylinders.

The characteristic build-up of response reported in previous works is clearly
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observed in Fig. 5.5 and contrasts with the typical VIV response obtained for a

single cylinder in Fig. 5.1. A discrete hump is found to occur for all separations

at around U/Df0 = 5.0 and corresponds to the local peak of VIV resonance;

although this happens slightly later in the reduced velocity scale due to the

shielding effect of the wake that reaches the second cylinder. Beyond that a

branch of monotonically increasing amplitude starts to build-up with increasing

reduced velocity. As expected, it reveals that displacement amplitude is inversely

proportional to separation x0. As the downstream cylinder is moved farther away,

the effect of WIV is reduced until the response curve eventually resembles that of

VIV of an isolated cylinder. While at x0/D = 4.0 the cylinder reaches displacement

amplitudes around ŷ/D = 1.6 and increasing, a cylinder at x0/D = 20 shows only

the VIV peak with levels ŷ/D around 0.2 for the rest of the regime.

The curve for x0/D = 8.0 is a particularly interesting one because the intensity

of the WIV effect is just enough to sustain the same level of response observed for

VIV through the whole range of reduced velocities. Nevertheless all presented cases

show some type of combined VIV and WIV responses, with the maximum amplitude

of VIV U/Df0 = 5.0 showing a minor dependency on x0.

The bottom graph of Fig. 5.5 shows the dominant frequency of oscillation for

each case plotted above. At a first view it is remarkable that all data points

collapse over a very well behaved frequency response independently of x0. During

the beginning of the VIV regime the frequency curve follows closely the St = 0.2

line until f = f0, but later departs from it to follow the lock-in behaviour observed

for a single cylinder within the synchronisation regime. But where the typical VIV

regime would have finished for a single cylinder, say for U/Df0 > 15, the f curve

remains on the same trend as before, which is distinctively lower than St = 0.2.

Even for large separations of x0/D = 20, in which the response resembles that of

simple VIV, the dominant frequency is observed not to return to St = 0.2 after the

end of the supposed synchronisation, but remains at a much lower level for the rest

of the reduced velocity range with ŷ/D around 0.2.

This is the first evidence that there must be a fluid force with a lower frequency

that dominates the excitation — lower than the vortex shedding frequency of both

91



0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

→
→

→

→

→

→

x0/D

4.0

5.0

6.0

8.0

10.0

20.0

ŷ
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Fig. 5.5: WIV response of the downstream cylinder for various x0 separations. Top: displacement;
bottom: dominant frequency of oscillation.
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cylinders. The frequency of the force appears not to vary with x0 and shows only a

small dependency on reduced velocity or Reynolds number when compared to the

St = 0.2 line, for example.

In order to remove the structural natural frequency (f0) from the problem, a new

non-dimensional frequency fD/U (a type of Strouhal number) is plotted against

reduced velocity and Re in Fig. 5.6. The St = 0.2 line now becomes a constant and

f0 is expressed as a curved line for reference. It shows that fD/U is asymptotically

converging to a value that is greater than f0 but still much lower than St = 0.2.

Although we will only deal with this plot later in this text it is convenient to place

it here along with Fig. 5.5, where the data came from. Data points at U/Df0 tending

to infinity will also be discussed later.

5.3 WIV of the downstream cylinder at x0/D = 4.0

With an understanding of the interference regimes from Chapter 3 and an overview

of the characteristic 1-dof response of WIV presented in Fig. 5.5 we will now focus

on one x0 separation in order to remove another variable from the system. A

separation of x0/D = 4.0 was chosen for various reasons: (i) it was beyond the

critical separation where a bistable reattachment of the shear layers may occur and

a developed wake was observed to be present in the gap for all flow speeds; (ii) it

gave a WIV response that is qualitatively consistent with other larger separations;

(iii) the displacement and magnitude of fluid forces were rather large and provided

accurate measurements with the load cell; (iv) and the separation was small enough

to fit in the PIV field of view.

Following the same discussion for a single cylinder, Fig. 5.7 presents the WIV

response of the downstream cylinder of a pair, initially in tandem, with x0/D = 4.0.

The same pair of springs was employed during the whole experiment and the velocity

of the flow in the test section was varied in order to cover a large range of reduced

velocity, therefore yielding Re = 2000− 25000. Again, the upstream cylinder was

kept static at all times.

The first graph in Fig. 5.7 plots the displacement versus reduced velocity. ŷ
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is the harmonic amplitude of displacement discussed above and gives a good idea

of the average amplitude of vibration for many cycles of oscillation. However ŷ

does not give a good estimation of the maximum amplitude the cylinder might

reach if displacement is varying from cycle to cycle. By actually counting individual

peaks of oscillation it was possible to estimate a maximum and a minimum peak

amplitude taking an average of the 10%-highest and 10%-lowest peaks of the whole

series, yielding [ŷ/D]max and [ŷ/D]min respectively. Therefore we can say that for a

certain reduced velocity the cylinder oscillates on average with ŷ/D but reaches the

maximum and minimum limits given by the other curves. This brings considerable

new information about the response since it shows that ŷ is not only building-up

with reduced velocity, but also the deviation from the average amplitude is also

increasing; i.e. the variation of the envelope is also increasing.

The second graph in Fig. 5.7 shows the frequency of oscillation versus reduced

velocity, the same data presented for x0/D = 4.0 in Fig. 5.5 but now plotted as

normalised PSD. It shows that the frequency of oscillation indeed follows a branch

greater than f0 but still not related to St = 0.2. But the PSD contours also

reveal that any other secondary frequency or harmonic present in the spectrum

of oscillation is much smaller than the single dominant branch that is evident across

the reduced velocity range. That is to say that there is no significant trace of a

frequency branch associated with St = 0.2 beyond reduced velocity 10, with only a

hint appearing between 5 and 10.

As we saw before in Fig. 5.2, the envelope of the single cylinder VIV response is

fairly regular except during the transition between branches. This is not the case

for the WIV response illustrated in Fig. 5.8. For three data-sets at different reduced

velocities we note that the envelope of response is already very irregular for only 50

cycles at U/Df0 = 4.6. It only gets more irregular for higher reduced velocities of

5.8 and 30.6. This is also revealed in the graphs on the right column, which compile

cycles of the 20%-highest peaks.

By comparing how Cy and ŷ vary during one cycle it is possible to estimate

the phase difference between them and also the frequency content of the signals.

For U/Df0 = 4.6, very close to the VIV resonance hump, we note that lift and

94



Fig. 5.7: WIV response of the downstream cylinder at x0/D = 4.0. Top: average displacement
and average of maximum and minimum peaks. Bottom: normalised PSD of frequency of
oscillation. Please refer to Appendix A.
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displacement are almost in phase and there seems to be a single dominant frequency

present in Cy. But moving to a slightly higher reduced velocity of 5.8 the behaviour

of lift changes considerably. Not only a second frequency appears in the signal,

but also the magnitude and phase of Cy are rather inconstant. Moving away from

the VIV influence towards the end of the reduced velocity range we note that a

higher frequency has definitely established in Cy, though it is not noticeable in the

displacement curves.

Even though the upstream cylinder was kept static at all times in these

experiments, it was also mounted on a load cell allowing instantaneous lift

measurements. Analysing the normalised PSD of the lift force on both cylinders

it is possible to identify and correlate other branches of frequency in Cy. Fig. 5.9

plots the normalised PSD of lift measured on both cylinders. From the top graph it

is evident that the lift force acting on the upstream cylinder originates in the vortex

shedding mechanism of that static body. There is only one distinct frequency branch

that follows very closely the St = 0.2 line. It can also be concluded that the force on

the upstream cylinder sees no effect of the oscillation of the downstream one, since

no significant trace of that lower frequency branch is identified.

On the other hand, the bottom graph shows that the lift force on the downstream

cylinder has two clear branches bifurcating from the VIV resonance point. The

lowest branch corresponds to the frequency of oscillation in Fig. 5.7, but the highest

branch is clearly associated with a vortex shedding frequency that follows the

St = 0.2 line. This frequency may originate in the vortex shedding mechanism

occurring on the upstream cylinder, or on the downstream cylinder, or on both.

(The normalisation applied to all PSD graphs does not allow comparison of energy

magnitudes across the reduced velocity axis, but only over vertical slices for a fixed

reduced velocity. Please refer to Appendix A for more information.)

Now, this vortex-shedding branch is predominant at lower reduced velocities,

probably related to the typical synchronisation range of VIV, but diminishes beyond

reduced velocity 15. The lowest branch appears around reduced velocity 5 but only

becomes dominant beyond reduced velocity 10. Within the range U/Df0 = 10− 20

both branches appear with equivalent energy content determining the region where
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Fig. 5.9: Normalised PSD of lift force acting on the upstream static cylinder (top) and downstream
oscillating cylinder (bottom). Please refer to Appendix A.
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both VIV and WIV are occurring together.

In fact, looking again at the response curve in Fig. 5.7 it is quite apparent that

three different regimes can be identified by different inclinations of the displacement

curve: (i) a VIV resonance hump (upper branch) around U/Df0 = 5; (ii) a combined

VIV (lower branch) and WIV regimes roughly in the range U/Df0 = 5− 17; and

(iii) a WIV regime for U/Df0 > 17.

It is consistent to think that the VIV regime should involve synchronisation

between vortex shedding from both cylinders, since their fs frequencies must be

rather similar. In order to investigate this we measured velocity fluctuations with

hot-film probes at two stations downstream of both cylinders (please refer to Fig. 4.4,

page 73). Fig. 5.10 presents the results confirming that the upstream cylinder is

undoubtedly shedding vortices as a static, isolated cylinder with no interference

from the oscillation of the downstream body.

On the other hand no clear identification of vortex shedding close to St = 0.2

was observed for the downstream cylinder that is oscillating. Of course once the

cylinder is vigorously moving upstream of a fixed probe it is very difficult to measure

any fluctuating component in the flow velocity other than that associated with the

movement of the body. Even when the low frequency branch was filtered out no clear

trace of vortex shedding was identified. This does not mean that the downstream

cylinder is not shedding vortices — on the contrary, fully developed vortices were

observed in PIV measurements as will be demonstrated later — it only means that

the hot-film probe was not appropriate to capture this phenomenon.

Finally, in Fig. 5.11 we analyse the fluid force components acting on the

downstream cylinder as expressed from Eq. 2.13 to 2.18 (page 32). Although one

may argue that the ‘harmonic forcing and harmonic motion’ assumption employed

in that analysis is not valid for the multi-frequency response of WIV, it might still

bring some light into the phenomenon since for higher reduced velocities the same

low frequency of oscillation is found in the lift content.

The top graph plots φ and φV versus reduced velocity showing that the phase

shift from almost 0◦ to almost 180◦ occurs at around the same reduced velocity as for

typical VIV. It shows that beyond the resonance peak φ and φV both remain close
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Fig. 5.10: Normalised PSD of velocity fluctuation in the wake of the upstream static cylinder (top)
and downstream oscillating cylinder (bottom). Please refer to Appendix A.
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to 180◦ until the end of the reduced velocity range. This plot also compares φ and

φV calculated by two different methods: the first solves Eqs. 2.13 and 2.16, which

assumes harmonic response and lift with one dominant frequency; and the second

averages the phase angles from the instantaneous Hilbert transform for the whole

series. If the force and the response indeed present a single harmonic frequency

— as they do for single cylinder VIV — both approaches are equivalent and the

curves collapse. But Fig. 5.11(top) shows that the harmonic hypothesis must be an

oversimplification of the WIV phenomenon. The actual phase angles calculated with

the Hilbert transform of the displacement and lift signals do not follow the results

from the idealised equations, but remain in a lower level for the whole range of the

WIV excitation. This result reveals that the average phase lag between displacement

and lift would actually be larger than the one predicted by a harmonic assumption.

The bottom graph shows the decomposed lift coefficient. For lower reduced

velocities up to the VIV resonance hump the curves show very similar behaviour

to that found for a single cylinder VIV (see Fig. 5.4). But instead of Cy and CyV

reducing and tending to zero by the end of the synchronisation range, both rise up

from around reduced velocity 7 up to 17, marking the second regime of combined

VIV (a possible lower branch) and WIV. A clear WIV regime is identified in Cy and

CyV
curves for U/Df0 > 17, as mentioned above, and their values remain roughly

at the same level as reduced velocity is increased.

Fig. 5.12 presents a detailed analysis of the instantaneous variation of φ during

50 cycles of oscillation. φ remains very close to 0◦ for the whole time series at

U/Df0 = 4.6, resulting in a clean Lissajous figure in the right column. During

the transition at U/Df0 = 5.8 it appears that an intermittent phase shift is also

present, corroborating with the observation in Fig. 5.8 (middle). Once the regime

reaches a higher reduced velocity of U/Df0 = 30.6 the phase is predominantly close

to φ = 180◦ but it is not as well behaved as that for the pure VIV for a single

cylinder. The corresponding Lissajous figure may suggest that a second dominant

frequency may also be playing a role, in agreement with Fig. 5.8 (bottom).
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5.4 Conclusion

The WIV response of the downstream cylinder of a pair is distinctively different

from the VIV response of a single cylinder. Although some aspects are common

to both types of FIV, especially those related to the overlap of VIV regime in the

WIV response, others are very different. The intermittent transition that occurs

around the VIV regime was observed for both mechanisms and is thought to be

purely related with this type of excitation. On the other hand, the low frequency

of response observed for high reduced velocities is not associated with the vortex

shedding mechanism of either cylinder.

In the next chapter we will turn from the response to investigating the origin of

the lift force that is driving WIV on the second cylinder.
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Chapter 6

The WIV excitation mechanism

This chapter discusses primarily the origin of the lift force acting on the downstream

cylinder. It starts by presenting results for steady forces on a pair of static cylinders

in staggered arrangements, detailing the force field for separation x0/D = 4.0. Then

it investigates unsteady forces acting on staggered, static cylinders before tackling

the full problem in which the second cylinder is free to respond to the fluid excitation.

The discussion is closely supported by PIV measurements of the instantaneous flow

fields.

In an attempt to clarify the origin of the phase lag between displacement and

fluid force, we present results from an idealised experiment with an artificial steady

wake generated by a set of screens.

6.1 Steady fluid forces on static cylinders

We have performed experiments with a pair of static cylinders in order to evaluate

the behaviour of fluid forces acting on the downstream body in various staggered

arrangements. Measurements were obtained by holding the upstream cylinder fixed

and traversing the downstream cylinder across 160 stations (each marked by a small

cross in the next plots) in and out of the wake interference region at Re = 19200.

Results are presented in a series of maps that are symmetrical in relation to the

centreline of the wake.



Fig. 6.1 presents the steady lift and drag acting on the downstream cylinder

for different regions of wake interference. A negative value of Cy indicates lift

force acting towards the centreline. As expected, the first evident observation is

that there is a steady lift force pointing in the direction of the centreline for all

investigated configurations. For x0/D > 3.0, it is observed that the magnitude of

the Cy continually decreases on increasing the separation, but the transverse extent

of the force field increases farther downstream as the wake widens. This is also

evident from Bokaian & Geoola (1984) and Zdravkovich (1977).

The map reveals two regions of intense steady lift as high as Cy = −0.8. As

discussed in Chapter 3, the first region between x0/D = 1.5− 2.5 is associated with

the gap-flow-switching mechanism occurring in the first wake-interference regime,

i.e. when fully developed vortices do not form in the gap. The second region

with Cy < −0.8 occurs for larger lateral separations around y0/D = 0.8. It begins

around x0/D = 2.5− 3.0 and develops a trend of maximum Cy (indicated by the

dash-dotted line) that will decrease in intensity as the second cylinder moves farther

downstream. This second region is associated with the second interference regime

in which the upstream shear layers are not able to reattach but roll up to form a

developed vortex wake in the gap.

In the steady drag map presented in Fig. 6.1(b) positive contours of Cx denote

drag in the streamwise direction. Dotted lines represent contours of zero or negative

drag that occur when the cylinders are close enough for the gap flow to be enclosed

by the reattaching shear layers. For x0/D > 2.5 the tandem downstream cylinder

only experiences positive drag indicating that a developed wake can now be formed

in the gap. This critical separation coincides with the overlap of the two trends of

maximum Cy presented in Fig. 6.1(a). While the downstream cylinder is immersed

in the wake of the upstream cylinder the steady drag will be lower than that expected

for a single cylinder exposed to a free stream. Only for lateral separations greater

than y0/D = 1.5 does this shielding effect disappear and Cx reaches values above

1.0.

So far we have only looked at the steady component of the fluid forces. If a

quasi-steady assumption is to be used to understand WIV these steady maps should
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Fig. 6.1: Contours of steady fluid forces on the downstream cylinder of a static pair. Re = 19200.
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Fig. 6.2: Contours of fluctuating fluid forces on the downstream cylinder of a static pair.
Re = 19200.
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of a static pair. Re = 19200.
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be adequate to provide the necessary gradients of Cy and Cx to satisfy a classical-

galloping-like model. However, by also analysing the fluctuating components of the

fluid force it is possible to identify if and where the unsteadiness of the flow is playing

a significant role.

Figures 6.2(a) and 6.2(b) show similar maps to those presented in Figures 6.1(a)

and 6.1(b) but plot contours of the fluctuating terms Ĉy and Ĉx (see Eq. 2.3).

Both graphs show regions of increased fluctuating lift and drag that only occur for

x0/D > 2.5 when a developed wake is more likely to appear in the gap. A contour

of Ĉy > 1.0 appears for tandem arrangements but it is quite evident that relatively

high values of Ĉy > 0.8 will also appear for other staggered locations around the

wake interference region. For separations below the critical value when vortices are

not formed in the gap the fluctuating lift is reduced to levels below Ĉy = 0.4.

Interestingly, the region of maximum Ĉx does not occur for tandem arrangements

but when the downstream cylinder has an offset of about y0/D = 0.5. Ĉx = 0.4 is

observed for the second interference regime at x0/D = 3.0 and a trend of higher

fluctuating drag is developed from this point decreasing in intensity as x0 is

increased.

The distribution of Ĉy and Ĉx across the wake gives support to the idea

that coherent vortices from the upstream cylinder contribute to the fluctuating

component of the fluid forces. Fluctuations due to the bistable nature of the

separating flow are expected to occur for a close proximity between the bodies.

But in this case we show considerable levels of steady and fluctuating fluid forces

acting on the downstream cylinder when it is positioned much farther downstream,

from separations of x0/D = 3.0.

The magnitude of Ĉy is also another important factor. Taking the example for

x0/D = 4.0 and y0/D = 1.0 we observe that the magnitude of the fluctuating lift is

greater than the steady lift; i.e. the actual lift on the cylinder is Cy = −0.6± 0.8,

probably even reaching an instantaneous positive (outwards) value once in a

few cycles. Even though one may attribute this enormous fluctuation to the

vortex shedding mechanism of the second cylinder, a fluctuation of Ĉy = 0.8

is comparatively higher than the value of Ĉy = 0.35 measured in the present
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experiments for an isolated cylinder at an equivalent Re. In Fig. 2.3 (page 25)

Zdravkovich (1997) shows that values of Ĉy for a static single cylinder show

significant scatter, varying between 0.3 and 0.7 for this Re range. We believe this

to be strong evidence that the steady lift force acting towards the centreline, as

well as the fluctuating component, originate from an amplification of the unsteady

interference of the vortex wake coming from upstream with the wake being formed

from the second cylinder.

If this is true we expect to find that the frequency of fluctuation of Cy and Cx is

somehow related to the frequency of vortex shedding from upstream. Now, we know

that the upstream cylinder is shedding vortices as an isolated body, with fs following

close to the line of St = 0.2 (Fig. 5.10). Fig. 6.3 presents a map of the frequency of

Cy and Cx normalised by the equivalent shedding frequency fs for the same U and

St = 0.2. We observe that the relative frequency of the dominant component of the

fluctuating forces is not much different from 1 once the second regime of interference

is established. In fact, it is rather clear that for close separations in the first regime

the frequency of Cy is distinctively lower than fs, revealing that a developed wake

is indeed not present in the gap. This result is in agreement with Alam et al. (2003)

who measured lift coefficients for both cylinders in tandem arrangements.

Our experimental results for the steady components are in very good agreement

with other works found in the literature, including the maps of steady lift and drag

produced by Zdravkovich (1977) and presented in Fig. 3.5(a) (page 49). We believe

this is the first time the magnitude and frequency of the fluctuating component of

the fluid force are mapped for staggered arrangements of cylinders.

6.1.1 Detailed map for x0/D = 4.0

Since we are concentrating our attention on x0/D = 4.0 we present a more detailed

investigation of the steady fluid forces acting on the downstream cylinder for this

separation. These results will be the basis for our discussion in the next chapter,

when we will propose an explanation for the frequency of response in the WIV

mechanism.
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Starting from the Cy and Cx maps above, we can keep the downstream cylinder

at x0/D = 4.0 and traverse it in finer steps across the wake along the vertical dashed

line plotted in Fig. 6.1. If we now vary Re for each one of these stations we have

the detailed curve presented in Fig. 6.4. Once more it shows that the steady lift

acting on the downstream cylinder points towards the centreline of the wake for

all y0 separations. An almost linear behaviour is observed for −1.0 < y0/D < 1.0

with a maximum of absolute Cy = 0.65 found just past y0/D = 1.0. Beyond that

separation the steady lift gradually reduces until it is out of the influence of the

wake and reaches zero around y0/D = 3.0.

In the second plot the steady drag curve reveals the shielding effect of the wake by

showing an almost 60% reduction in drag at the centreline of the wake, however the

mean drag never gets to negative values (drag inversion) for this separation. Bokaian

& Geoola (1984) observed that the distribution of the drag coefficient is insensitive

to a limited increase of Reynolds number from Re = 2600 to 5900. Price (1975) also

observed the same independency from Re for a range one order of magnitude higher.

We also conclude that the steady fluid forces, lift and drag, do not vary with

Reynolds number for the range of the experiments Re = 2000− 25000. In fact,

several values of Re within this range were analyzed but only three are plotted in

Fig. 6.4 for clarity. This explains why our maps from Fig. 6.1 for Re = 1.9× 104 are

in good agreement with Zdravkovich’s (1977) for Re = 6× 104 in Fig. 3.5(a).

6.1.2 Analysis of steady lift on static cylinders

Fig. 6.5 goes into the detail of characterising the actual steady flow field around the

static cylinders associated with those steady fluid forces. Contours of normalised

velocity magnitude (
√
u2 + v2/U) obtained with PIV are presented for four staggered

separations across the wake, including the tandem arrangement. At y0/D = 0 we

can see that there is no evident asymmetry in both wakes but it seems that the wake

coming from the upstream cylinder is split around the downstream body keeping

a fairly symmetric flow field around the second body. But as the cylinder moves

outwards from the centreline an asymmetric steady flow is produced around the
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(a) y0/D = 0 (b) y0/D = 1.0

(c) y0/D = 2.0 (d) y0/D = 3.0

VelMag/U: 0.1 0.2 0.4 0.6 0.8 1.0

Fig. 6.5: Steady flow velocity field around a pair of static cylinders in four staggered arrangements.
x0/D = 4.0, Re = 19200. Contours of velocity magnitude normalised by free stream
velocity (

√
u2 + v2/U). The grey circle behind the downstream cylinder represents the

shadow region where PIV data is not available.
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downstream body. Streamlines show that the steady wake of the upstream cylinder

is displaced by the presence of the second body. A slight rotation of the mean

wake of the downstream cylinder can be noted for y0/D = 1.0, which is precisely

the separation where the downstream cylinder experiences the highest Cy. This

effect seems to be reduced as the cylinder moves further out from the centreline in

agreement with force measurements in Fig. 6.4.

We believe these maps represent the phenomenon described by Zdravkovich

(2003) as wake-displacement when he writes that “the downstream cylinder is not

immersed in the upstream cylinder wake but displaces it instead”. It is evident at

y0/D = 1.0 that the wake of the upstream cylinder is deflected, probably rotating

the front stagnation point of the second cylinder. Following the streamlines around

the downstream cylinder in Fig. 6.5(b) it does look like the second body experiences

an incident flow that is inclined inwards in relation to the free stream. However the

streamlines downstream of the flow seem to be parallel to the free stream, indicating

a change in steady flow momentum, thus generating lift towards the centreline. We

are not certain if this is the mechanism observed by Zdravkovich, but it certainly

offers a possible explanation for the origin of the steady lift based on the steady flow

field around the cylinders.

Now, a quasi-static analysis of WIV requires the downstream cylinder to extract

energy from the flow as it moves across the steady force fields discussed above.

In other words, the excitation force acting on the body should not depend on its

movement or any unsteady interaction with the upstream wake, but only in the

relative position of the cylinder across the wake. This might be true for bodies with

very small transverse velocities ẏ, but certainly this is not the case observed in the

WIV response presented above.

Even a quasi-steady hypothesis may be too much of an oversimplification in this

case. Based on data from Fig. 5.7 we can estimate the maximum transverse speed

the cylinder reaches as it crosses the centreline of the wake for the maximum reduced

velocity point. On average, ẏ is around 55% of the free stream velocity U , but it can

reach values up to 67% for the most severe cycles. With such vigorous cross-flow

movement it is difficult to accept that the downstream cylinder is not affecting or
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interacting with the wake coming from the upstream one, making it implausible to

hold on to any quasi-static or quasi-steady assumptions. Therefore we believe a

completely unsteady investigation of the force-displacement interaction is required

to understand how the WIV mechanism works.

But before we jump into the investigation of the instantaneous force acting on

a moving cylinder we shall consider the unsteady flow field that is generating the

steady and fluctuating forces on a pair of static cylinders.

6.2 Analysis of unsteady lift on static cylinders

We turn now to the unsteady analysis of the instantaneous flow field that generates

lift on the downstream cylinder of a staggered pair. Fig. 6.6 presents a short

time series of Cy measured on a static downstream cylinder at x0/D = 4.0 and

y0/D = 1.0. The dot-dashed line represent a steady lift of Cy = −0.65 estimated

from Fig. 6.4. The variation of Cy from one cycle to another exemplifies the

irregularity of the lift force, and the average fluctuation of Ĉy = 0.6 can also be

noted in this plot.

There are two data points marked with circles that represent the maximum and

minimum Cy in this short time series for which we will investigate the corresponding

flow fields. Fig. 6.7 shows instantaneous vorticity contours and the corresponding

velocity field from instant ‘a’ in the trough, i.e. when Cy = −1.4 is strongest towards

the centreline; and for instant ‘b’ on the crest, which presents a small Cy = 0.32

pointing outwards. Vortices identified with A and B were respectively shed from the

upstream and downstream cylinders; odd indices mean that vortices have positive

vorticity and were shed from the right-hand side of the bodies, even indices mean the

opposite. Vortices are identified in both instants so we can follow the development

of the wake from ‘a’ to ‘b’.

As the flow passes around the upstream cylinder a fully developed wake is formed

in the gap. In Fig. 6.7 we see the instant when vortex A4 is being formed very close to

the cylinder, inducing a high speed flow that is shown with red vectors in the velocity

field. A fully developed vortex A3, which was formed half a cycle before, is convected
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Fig. 6.6: Time series of lift on the downstream cylinder of a static pair in staggered arrangement
x0/D = 4.0 and y0/D = 1.0. The dot-dashed line represents Cy = −0.65. Re = 19200.

Fig. 6.7: Instantaneous vorticity contours and velocity field (coloured by velocity magnitude)
obtained with PIV around a pair of static cylinder in staggered arrangement. x0/D = 4.0,
y0/D = 1.0, Re = 19200. Please refer to Fig. 6.6.
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(a) Enhanced Cy (b) Diminished Cy

Fig. 6.8: Sketch of vortex-structure interaction that generates minimum and maximum Cy on the
downstream cylinder at x0/D = 4.0 and y0/D = 1.0. Please refer to Figs. 6.6 and 6.7.

downstream and induces high speed flow on the inner side of the downstream

cylinder. This high speed jet accelerates the boundary layer flow running on that

side contributing to add more circulation into the shear layer. Consequently, vortex

B4 forming on the second cylinder must have a higher circulation than a typical

vortex on a single cylinder would. However, fully developed vortex A2, shed in the

previous cycle, passes around the downstream cylinder and induces a flow field that

will push B4 closer to the downstream cylinder.

We believe that this combination of high speed flow induced in the inner side

added to the a strong vortex being formed and held closer to the second cylinder

is generating the high lift of Cy = −1.4 found in Fig. 6.6. Of course the interaction

between vortices from previous cycles is occurring in the wake downstream of the

second body — with vortices from both cylinders merging together and moving in

pairs — but what is happening around the second cylinder has significantly more

influence on the force being generated than the wake far apart.

Now, moving to instant ‘b’ in Fig. 6.7 we observe that vortices have been

convected further downstream and a new vortex A5 is being formed on the upstream

cylinder. Downstream of the second cylinder we observe that A2 has merged with

B4, forcing B3 to be released and giving way to a new B4* that starts to roll up. A

fully developed A3 impinges and splits around the second cylinder with a portion

A3* moving through the inner side and the rest following an outer path. As A3*
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and the new B4* interact they induce a very high speed flow across the wake that

forces the formation of B4* further inwards. On the other side, B5 is also forced

and rolls up closer to the downstream cylinder contributing to generating a small

lift Cy = 0.32 acting outwards.

Fig. 6.8 summarises the explanation presented above highlighting the main

vortex-structure interactions occurring in the wake. The effect of upstream vortices

on the downstream cylinder is seen to be paramount in both cases: (a) when

A3 induces high speed flow on the inner side and A2 displaces the downstream

wake outwards; and (b) when A3 splits around the body and interacts with B4 to

generate high speed flow inwards. Both configurations are associated with a change

in momentum induced by the vortices interacting with the cylinder wall.

Price (1976) performed experiments with sensitive paint on the surface of the

cylinder to determine the location of stagnation and separation points for several

staggered arrangements. He noted that although the position of the front stagnation

point on the second cylinder could be resolved, “the position of the separation points

could not be found with any accuracy.” He was referring to the fluctuation that

occurs on the inner wall of the downstream cylinder, proving that the unsteadiness

of the wake is strong and may be dynamically acting to change the separation point

from one cycle to another.

We know that identical wake patterns are not repeatable as vortices from

both cylinders may be forming at different rates and strengths. Nevertheless

we believe this flow field investigation offers a good illustration of the complex

vortex dynamics occurring in the wake associated with severe lift fluctuation on the

downstream cylinder. We should expect to find even more complex dynamics when

the downstream cylinder is oscillating with high transverse velocities.

When cylinders are in close proximity (like tight tubes in heat exchangers) —

and no vortices are formed in the gap — the flow may resemble some sort of potential

flow. That is why Paidoussis et al. (1984) decided to employ a potential-flow theory

to model the problem for an array of cylinders, even though he had to account for

some viscous effect by introducing a time delay in the fluid force. But when the

separation is large, like the one presented above, the wake in the gap is far from a
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steady flow and does not resemble irrotational flow whatsoever; on the contrary, it

is full of vortices that cannot be neglected. A time delay (or phase lag) must always

be accounted for when modelling this problem, otherwise no oscillatory instability

would be sustained. But to think of an explanation for the time delay that ignores

the vortex-structure interaction is an oversimplification of the problem, at least for

the second regime with large separations and a developed wake in the gap.

6.2.1 Conclusion

Zdravkovich (1977), Bokaian & Geoola (1985) and others attributed the phase lag in

the force to the switching of a low-speed steady wake from one side to the other as the

second cylinder crosses the centreline. This was Zdravkovich’s natural conclusion

since a similar hysteretic phenomenon had been found to exist for the gap-flow-

switching mechanism in close proximity. We believe his wake-displacement model

works by extrapolating a concept based on the quasi-steady gap-flow-switching idea

rather than offering proper evidence for a new WIV mechanism.

We saw that a strong and complex vortex-structure interaction is present and

hence must be involved in the excitation mechanism. We cannot guarantee a priori

that a quasi-steady assumption of the fluid forces (even if it accounts for hysteretic

effects) will represent the phenomenon with all its unsteadiness. Instead we suggest

that a phase lag is generated as the unsteady wake is modified by the movement of

the second cylinder. In other words, a simple steady wake without the unsteadiness

of the vortices is not able to generate the necessary phase lag to excite WIV.

In order to evaluate this hypothesis we will proceed in two steps. First we present

an idealised experiment designed to reproduce a wake with its steady shear flow

profile but without the unsteadiness of the vortices. Then later we will investigate

lift force measurements paired with instantaneous flow fields to assess if there is a

phase lag related to the vortex-structure interaction as the second cylinder oscillates.
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6.3 Shear flow experiment

The main assumption of a quasi-steady approach for WIV is that the fluid forces on

the downstream cylinder do not depend on the unsteadiness of the wake but only on

the steady flow velocity profile and the relative position of the cylinder. Therefore if

we could generate a wake with a similar steady profile but without the unsteadiness

of the vortices and immerse an elastically mounted cylinder in this velocity field, we

should expect to see a response similar (at least qualitatively) to the WIV of two

cylinders. A cylinder immersed in a similar steady velocity profile would be able to

experience the predicted phase lag and therefore be excited into WIV. In principle

any shielded profile that has the same steady characteristics of the wake would work,

produced or not by an upstream bluff body.

According to this hypothesis, the phase lag between lift and displacement would

still be present in such a flow as the wake switches from one side to the other as the

body crosses the centreline. A qualitatively similar WIV response would be good

evidence that unsteady vortices are not necessary to generate the phase lag and

sustain vibrations. Note that this hypothesis only requires that the steady velocity

profile be similar to a shielded flow but it does not carry the necessity that this wake

be full of unsteady vortices. In other words, if this is correct, only a steady wake

without unsteady vortices should be enough to generate the excitation due to the

phase lag in the wake-displacement mechanism.

6.3.1 Experimental set-up

For this experiment a set of screens made of thin stainless steel wires was cut in

stripes of different widths. Then a set of superimposed screens was positioned

vertically in the centre of test section in order to alter the mean velocity profile

from the free surface to the floor. The set of screens was fixed on an aluminium

honeycomb with the purpose of removing major cross flow components. The set-up

is illustrated in Fig. 6.9, where u represents the resultant shear flow profile.

Such a technique is employed by naval engineers studying hydrodynamics of

propellers. The velocity profile downstream of a ship hull is measured on a scaled
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Fig. 6.9: Set-up of set of screen and honeycomb for the shear flow experiment.

model towed in still water. Usually the size of the model is too small to allow

study of the propeller in the same scale, especially if cavitation is to be considered.

By sewing together sets of screens to form a wire panel, the velocity profile of the

hull can be artificially scaled up to match the dimensions of the propeller and the

interaction between wake and propeller can now be studied in a cavitation tunnel.

The flow field around a pair of cylinders under WIV was measured with PIV

to serve as reference. The steady velocity profile of the fully developed wake was

averaged from a number of snapshots (corresponding to more than 100 cycles of

oscillation and many more cycles of vortex shedding), resulting in the flow fields

presented in Fig. 6.10. The process was repeated for four Re within the range

of the experiments, although only two are plotted here for brevity. Two dashed

circles mark the average amplitude of oscillation the downstream reached during

the measurements.

When considering fluid forces acting on the second cylinder Price (1976) had

already noticed that the lift profile on the body depends “on its own characteristics

in the wake and not particularly on the wake characteristics”. He concluded that

“the use of wake parameters, measured without the presence of the [second] body

when attempting to assess the forces thereon, is an oversimplification of the situation

as far as lift is concerned, while appearing to work quite well for drag”. For this

reason, flow field measurements were performed with the downstream cylinder in

place and oscillating in order to account for the interaction between the body and

the upstream wake.
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Fig. 6.10: Steady flow velocity field around a pair of cylinders while the downstream cylinder is
oscillating under WIV. Contours of u coloured by velocity magnitude.
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Fig. 6.11: Steady flow velocity field generated by a set of screens. Contours of u coloured by
velocity magnitude.
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Fig. 6.12: Comparison between steady velocity profiles for various flow speeds measured across the
wake at x0/D = 3.0: —— set of screens; − · − pair of cylinders.

With the profiles around a pair of cylinder in hand, we removed the upstream

cylinder and adjusted the set of screens in order to generate the best possible

profiles to match the reference cases. Several screens of different mesh densities

were combined in order to obtain equivalent velocity profiles for the range of Re

of the experiments. Fig. 6.11 presents the steady profiles obtained downstream of

the screens for two of the Reynolds numbers investigate (Re based on the cylinder

diameter). The dashed circle represents the position where the cylinder would be

placed, although it was not immersed in the wake during these measurements.

The streamwise velocity profile across the wake at x0/D = 3.0 was extracted

from the PIV flow fields and used to validate the comparison. The result is plotted

in Fig. 6.12 for the four Re investigated. The same profile can also be seen in

Figs. 6.10 and 6.11 represented by an array of vectors plotted across the wake in

the gap between the cylinders and at the equivalent distance downstream of the

screens. The two most important wake parameters tuned in the calibration of the

screens were the average breadth of the wake and the minimum flow speed on the

centreline. Fig. 6.12 reveals a reasonably good agreement between reference and

generated profiles in spite of the complexity of the set-up designed to achieve these

results.

In order to verify the effect mentioned by Price (1976) and discussed above,
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Fig. 6.13: Comparison between steady velocity profiles measured across the wake at x0/D = 3.0:
—— set of screens; −−− single cylinder; − · − pair of cylinders. Re = 14500.

Fig. 6.13 compares the velocity profile generated by screens with other two profiles

measured with and without the second cylinder in place. We notice that when the

downstream cylinder is present and oscillating it not only has an effect of extending

the breadth of the wake, but also reducing the flow speed on the centreline. This

plot shows that although the profile generated by the screens was calibrated to

reach a streamwise velocity deficit similar to the case with two cylinders it still lies

in between the other two curves as far as the breadth of the wake is concerned.

An instantaneous snapshot of the vorticity field plotted in Fig. 6.14(b) reveals

that the shear profile generated by the screens does not have coherent vortices

related to bluff body vortex shedding. This is even clearer when the instantaneous

wake is contrasted with the wake of a static cylinder shedding vortices in the 2S

mode (Fig. 6.14(a)). Both vorticity fields in Fig. 6.14 have the same contour-colour

scale, allowing direct comparison between fully developed wakes. (The magnitude

of vorticity is not relevant for this analysis.)

The position of the screens in Figs. 6.11 and 6.14(b) is merely illustrative. In

reality the set of screen was positioned at around 10D upstream of the cylinder, as

shown in Fig. 6.9.

Finally, we were able to conclude that an artificial velocity profile equivalent

to the steady velocity profile in the gap between a pair of cylinders was generated
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(a) (b)

Fig. 6.14: Instantaneous vorticity contours of the wake downstream of (a) a single cylinder and
(b) a set of screens. Both images have the same contour-colour scale to allow direct
comparison. Re = 9600 based on cylinder diameter.

without the unsteadiness of the vortices. Now we are ready to investigate the effect

this artificial shear flow would have on an elastically mounted cylinder.

6.3.2 Steady forces on a static cylinder

We begin by investigating the steady fluid forces acting on a static cylinder as it is

traversed across the wake for various Reynolds number. Fig. 6.15 presents maps of

lift and drag that can be compared to the steady force map of a pair of cylinders

in Fig. 6.4 (page 109). Similarly to the case of a pair of cylinders, we note that the

behaviour of the fluid forces does not vary with Re. However, we immediately see

a considerable difference in the lift curve when both cases are compared. While for

a pair of cylinders the minimum lift towards the centreline reached Cy = −0.65 at

around y0/D = 1.0, the cylinder immersed in a shear flow only reaches a minimum

of Cy = −0.2 for the same position. This represents a 69% reduction in steady lift

if vortices are removed from the wake.

Nevertheless, the similarity in steady drag between the two cases is remarkable.

Both reach a minimum around Cx = 0.5 on the centreline of the wake with a very

similar behaviour as the cylinder is displaced outwards, recovering around Cx = 1.3
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Fig. 6.15: Steady fluid forces on a static cylinder in shear flow for various positions across the wake.
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Fig. 6.16: Fluctuating fluid forces on a static cylinder in shear flow and on the downstream cylinder
of a pair with x0/D = 4.0. Re = 19200.

out of the wake interference region. This correspondence must be related to the fact

that the streamwise component in both cases is very similar, therefore the shielding

effect observed in the steady flow field is well reproduced by the screens.

In addition to that we can also note a remarkable reduction in the fluctuating

fluid forces if vortices are not present in the upstream wake. Fig. 6.16 compares Ĉy

and Ĉx on static cylinders for both experiments. While the fluctuating lift coefficient

reaches values around Ĉy = 0.8 for the downstream cylinder of a tandem pair, the

maximum fluctuation of lift in the shear flow is only around Ĉy = 0.3, which is very

close to the magnitude of Ĉy = 0.35 due to vortex shedding measured for a single

static cylinder. The fluctuation in drag is also affected, with an amplification from

Ĉx = 0.035 to 0.23 at y0/D = 1.0 if vortices are present in the upstream wake. Note

that for larger separations out of the wake interference region the curves for both

cases seem to be converging to the value of an isolated cylinder.

This is strong evidence supporting that vortex interactions from the upstream
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wake are responsible for the high steady and fluctuating lift on static cylinders in

staggered arrangements. Remove the unsteadiness from the wake and the steady

lift towards the centreline is considerably reduced, almost disappearing, with the

fluctuating term tending towards values measured for a single cylinder.

Previous works tried to attribute the existence of a steady force towards the

centreline to mechanisms such as: wake-buoyancy, turbulent transition in one

shear layer, resolved drag and circulation around the cylinder (to cite the most

relevant described in Chapter 3). However, as noted by Price (1976), none of these

mechanisms accounted for the total magnitude of Cy on the second cylinder. In

Fig. 6.15 we showed that only a residual Cy = −0.2 at y0/D = 1.0 still remains even

when vortices are removed from the upstream wake.

Apparently this residual lift in a steady shear flow is equivalent to the maximum

Cy predicted by the wake-buoyancy and resolved drag hypothesis discussed before.

Both mechanisms are based on a steady flow field — exactly what was reproduced

by the screens — and they may well be responsible for the residual lift we observed

in the shear flow experiment. But of course not all the unsteady vorticity in the

wake could be removed, as seen in the instantaneous flow contours of Fig. 6.14, and

the residual Cy towards the centreline may as well be an effect of this weak unsteady

vorticity field that still remains. Nonetheless, we were able to show that the presence

of vortices is indeed responsible for the high Cy measured for staggered cylinders

and accounts for raising the residual steady lift generated by a steady shear flow up

to Cy = −0.65 measured when a fully developed wake is present in the gap.

In summary, considering that Cy = 0 for a single cylinder in uniform flow, the

presence of a steady shear flow contributes to a minimum Cy = −0.2, but only with

the presence of unsteady vortices will the total Cy = −0.65 be reached. Not to

mention the effect of unsteady vortices in enhancing the fluctuating term of the

fluid force presented in Fig. 6.16. This result combined with the unsteady analysis

presented in Fig. 6.7 (page 114) offers a good explanation for the role of vortical

structures in enhancing lift on the downstream body.
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Fig. 6.17: Response of the downstream cylinder in shear flow compared with other typical VIV
and WIV responses.

6.3.3 Response of a cylinder in shear flow

We then placed an elastically mounted cylinder immersed in the shear flow described

above in order to investigate the FIV response. Were WIV to be excited by the

steady flow we would be able to see a build up of amplitude similar to the response

obtained for a pair of cylinders. However, the response was completely different

from previous WIV results. Fig. 6.17 brings the comparison.

Instead of developing a high-amplitude branch that increases with reduced

velocity, the response resembled that of a single cylinder under VIV. A clear resonant

peak is observed around U/Df0 = 7, but the amplitude suddenly dies out towards

a residual level below ŷ/D = 0.2 for reduced velocities higher than 15. Even though

upper and lower branches are not as clearly distinguishable as for a single cylinder

VIV, an evident synchronisation range is still noticeable. Of course the response is

slightly different from the typical VIV curve, but it is strikingly similar to that rather

than to the measured WIV curve also plotted in Fig. 6.17. In fact, the similarity

is so strong that we cannot avoid concluding that the cylinder in shear flow is only

responding with a type of modified VIV altered by the steady shear flow.
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The fact that the peak of resonance is slightly offset towards higher reduced

velocities is in agreement with the shielding effect of the steady wake. From the

velocity profiles presented before (Fig. 6.12) we note that the deficit in streamwise

velocity in the wake is on average around 45% of the free stream velocity, resulting in

precisely the observed offset from the VIV peak for a single cylinder. (The data-set

tagged ‘without springs’ will be discussed in the next chapter.)

We conclude that the response of the cylinder is evidence that coherent vortices

in the wake are necessary to sustain WIV. Removing the vortices we only observed a

distorted type of VIV, but not a build-up of response typical of WIV. Although we

are convinced that vortex-structure interaction is important and necessary for the

mechanism to be sustained, so far it is still not clear how vortices from the upstream

wake interact with the downstream cylinder in oscillation. In other words, we still

need to investigate why vortices enhance the steady and fluctuating lift terms on

the downstream cylinder and also how the phase lag is generated. For this reason

we now turn our attention to the unsteady forces and flow fields around a pair of

cylinders in WIV.

6.4 Analysis of unsteady lift on an oscillating

cylinder

As discussed before, the WIV response is characterised by considerable variations

between cycles as far as displacement is concerned. We have also noticed that

an irregular envelope of displacement is more evident in WIV than in a typical

VIV response for one cylinder. Therefore it is straightforward to presume that a

somewhat irregular response must be excited by an irregular fluid force.

Fig. 6.18 brings an example of the time series of displacement and lift for around

250 cycles of oscillation for the case analysed in this section; located at high reduced

velocity, far enough from the influence of the VIV regime. The dashed lines in

Fig. 6.18 represent the average amplitudes ŷ/D = 1.5 and Ĉy = 0.7 obtained from

Figs. 5.7 and 5.11. The irregularity of both envelopes — with a number of peaks
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Fig. 6.18: Time series of displacement (top), lift coefficient (middle) and instantaneous phase angle
(bottom) for around 250 cycles of WIV. x0/D = 4.0, U/Df0 = 25, Re = 19200.

appearing above and below the dashed lines — clearly shows that the response and

the excitation force indeed present considerable variation. The bottom graph shows

the instantaneous phase angle φ calculated by the Hilbert transform directly from

the y and Cy signals. The dashed line indicates the value of φ = 161◦ averaged for

the whole time series in Fig. 5.11.

One would imagine that for such a high reduced velocity the frequency of

vortex shedding would be so much higher than the frequency of oscillation that

the unsteadiness of the wake could be ignored. In that case we would be entering

the territory where quasi-steady theory is applicable. At that point, with the wake

resembling a steady flow, the expected steady-state response should also present
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average cycle in black. x0/D = 4.0, U/Df0 = 25, Re = 19200.

a well behaved envelope. However this does not agree with the evidence. Instead

we observe growing irregularity from cycle to cycle with the difference between the

maximum and minimum peaks ever increasing with reduced velocity.

In order to investigate in more detail the relation between displacement and fluid

force we shall plot a collection of several cycles with similar displacement amplitude

superimposed in one graph. Fig. 6.19 shows the displacement and lift for 20% of the

total number of cycles around the average amplitude of ŷ/D = 1.5. Once more the

variation in both y and Cy is evident. It is also clear that the fluid force signal shows

a component of higher frequency apart from the lower frequency that matches the

oscillation.

Taken as a whole it appears that the fluid force is indeed in antiphase with the

displacement, but if we look carefully at the multitude of red lines crossing Cy = 0

we will note that the lift force anticipates the displacement practically in all cycles.

In fact, if we consider the average cycle given by the black lines we conclude that

the displacement lags the lift by around φ = 180◦ minus one-tenth of a period. Here

is the phase lag we were looking for. An average delay of 0.1t/T is equivalent to

φ = 162◦, which is remarkably close to the average value of φ = 161◦ presented in

Fig. 6.18 (obtained from Fig. 5.11, page 101).

In fact, if we start from Eq. 2.11 (based on the harmonic assumption discussed in
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Chapter 2) and take all other variables from the results presented before we conclude

that for such very low values of mass and damping (m∗ζ = 0.018) a minute phase lag

of φ = 179.4 would be enough to excite the system with ŷ/D = 1.5 at U/Df0 = 25.

This is the curve ‘φ (Eq.)’ in Fig. 5.11. However, if we employ the same harmonic

hypothesis for the actual φ = 161◦ averaged from the Hilbert transform we conclude

that the amplitude of oscillation would reach the unrealistic value of ŷ/D = 45.

Hence we conclude that a simple ‘harmonic forcing and harmonic motion’ hypothesis

does not apply directly to the WIV mechanism. Rather a more complex modelling

that considers multiple frequencies present in the wake should be developed.

Turning again to Fig. 6.19, it appears that the phase lag is actually a consequence

of the higher frequency existent in the lift signal. Since fs from the upstream cylinder

is increasing with flow speed and the oscillation frequency of the downstream cylinder

is increasing at a different rate, the relationship between both frequencies is also

changing. Essentially, this higher frequency must be associated with the vortex

shedding frequency of the upstream wake — at least this is observed for static

cylinders — but one cannot tell how repeatable this forcing is as the downstream

cylinder oscillates and interacts with upstream vortices.

The only conclusion we can make is that with such an irregular forcing it is

most likely that the fluid force will not be perfectly in phase (or in antiphase)

with the displacement, especially as the cylinder crosses the centreline of the wake

where strong vortices are present. Therefore the phase lag must be coming from the

unsteadiness of the wake, i.e. from the vortex-structure interaction as we have been

arguing so far.

Similarly to the investigation presented for a static cylinder at the staggered

arrangement of y0/D = 1.0 (Fig. 6.7, page 114), we can analyse the wake

configuration that generates the corresponding lift trace. Fig. 6.20 presents a short

sample from the time series presented above for which the flow field was captured

with PIV. The lift coefficient curve represents the vortex-component of the fluid

force discussed in Chapter 2, Eq. 2.18; it only accounts for the force generated by

the vorticity in the wake and not the inertia reaction due to the ideal flow added

mass.
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Fig. 6.20: Time series of displacement and vortex-force component of lift on the downstream
cylinder under WIV. x0/D = 4.0, U/Df0 = 25, Re = 19200.

Vorticity contours and velocity fields for six instants marked from ‘a’ to ‘f’

are shown in Fig. 6.21. Following the same notation employed before, vortices

tagged with ‘A’ were shed from the upstream cylinder, while vortices ‘B’, from the

downstream one. Also, odd indices designate vortices shed from the right-hand side

(positive vorticity in blue), while even indices, from the left-hand side (negative

vorticity in red). The same vortices are identified from frames ‘a’ to ‘f’ to reveal the

development of the sequence.

Frame ‘a’ was taken with the cylinder very close to maximum displacement when

lift was the strongest towards the centreline. Like the wake configuration observed

for static cylinders, we find vortex A2 inducing high speed flow close to the inner

side of the cylinder while A1 induces vortex B3 to form closer to the wall. However,

as the cylinder accelerates towards the centreline B3 is suddenly released and a new

vortex B5 forms in its place. In Fig. 6.20 we see that the lift force changes its

direction slightly before the cylinder crosses the centreline.

In frame ‘b’ we see that vortex A2 impinges on the second cylinder, splitting in

two parts around the body as it crosses the centreline; a part will merge with B4

and a part will join B5 in the downstream wake. At the same time we see that A3

coming from the upstream cylinder induces a high speed flow that is contrary to the

second cylinder motion. This strong interaction is responsible for the local peak in

the lift curve in Fig. 6.20. A moment later in frame ‘c’ vortex A3 is splitting around

the second cylinder and inducing A2+B4 away from the body, while a strong B5
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Fig. 6.21: Instantaneous vorticity contours and velocity field (coloured by velocity magnitude)
obtained with PIV around a pair of cylinder under WIV. x0/D = 4.0, U/Df0 = 25,
Re = 19200. Horizontal arrows represent the lift acting on the cylinder; please refer to
Fig. 6.20. Continued on next page.
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Fig. 6.21: Continued from previous page. Instantaneous vorticity contours and velocity field
(coloured by velocity magnitude) obtained with PIV around a pair of cylinder under
WIV. x0/D = 4.0, U/Df0 = 25, Re = 19200. Horizontal arrows represent the lift acting
on the cylinder; please refer to Fig. 6.20.
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rolls up on the other side resulting in an almost zero lift as the cylinder decelerates

towards the minimum peak of response.

The process is repeated for the other half of the cycle as the cylinder crosses

the wake in the opposite direction. Frame ‘d’ shows that maximum lift towards the

centreline occurs when vortex A5 induces high speed flow on the inner side of the

body, while A4 induces B6 to form closer to the cylinder. Note that maximum

lift was not registered for the lowermost displacement, but when the cylinder

encountered that particular wake configuration on its way towards the centreline.

Again, the lift inversion happened slightly before the cylinder crossed the centreline.

Similarly, another local peak of lift shown in frame ‘e’ is caused by the impingement

of vortex A5; it splits around the cylinder merging with B7 on the inner side and

with B8 on the outer side. An almost zero lift is obtained in frame ‘f’ when the

cylinder experiences the same wake interaction as in ‘c’, though in the opposite

direction.

We chose to analyse this example of the time series because the lift force in

the first half of the cycle is mirrored by the second half, therefore giving more

insight into the wake-structure interaction taking place. However we note that the

peak of amplitude in frame ‘a’ is different from the peak the cylinder will reach

just after frame ‘f’. Once more this reveals that the response of the body is very

dependent on the configuration of the wake it encounters for each cycle. With the

crossing velocity ẏ changing for each cycle, the vortex-structure interaction will also

be different, resulting in different responses. In fact, if we look again to the short

time series presented in Fig. 6.20 we will note that the trace of lift for the previous

cycle between t = 0s and 1.0s is different from the cycle we investigated between

t = 1.1s and 3.1s and also different from the following cycle after t = 3.1s.

Consequently, the phase lag varies from cycle to cycle. In Fig. 6.20 the phase

lag at t = 3.5s is larger than in the previous cycle. At t = 0.7s the opposite is also

observed and now it is the displacement that anticipates the fluid force. All this

variation between successive cycles confers to the system the irregularity in response

that was observed in the displacement and lift envelopes. But the fact that the phase

lag will rarely be equal to zero also guarantees that energy will be transferred from
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the fluid to the structure sustaining WIV, albeit in irregular amounts from cycle to

cycle.

6.4.1 Three-dimensionality of the wake

At this point one might ask if the lift force measured with the load cell for the

cylinder as a whole can be directly associated with the instantaneous flow fields

presented in Fig. 6.21. Of course three-dimensional vortical structures are present

in the wake for this Re range — especially streamwise vortices related to three-

dimensional modes described by Carmo et al. (2008) — but coherent vortex tubes

parallel to the cylinder axis still dominate the dynamics of the flow.

Although not presented here for brevity, we have obtained visualisations and PIV

measurements of the flow illuminating a vertical plane parallel to the cylinders axes.

Oblique shedding was sometimes observed to occur, especially from the bottom half

near the floor, however once the downstream cylinder was allowed to oscillate its

movement tended to correlate not only its own shedding but also the shedding of

the upstream body. This effect was reduced as x0 was increased, but still vertical

vortex tubes shed from the cylinder were roughly parallel to the cylinders axes, at

least in the gap of x0/D = 4.0.

The wake downstream of the second cylinder was verified to be more complex

than the wake in the gap due to strong interactions between vortices and the

movement of the second cylinder. As a result, significant three-dimensional flow

structures were observed to occur primarily downstream of the second cylinder rather

than in the gap.

The transverse velocity of the cylinder across the wake may as well be generating

perturbations that propagate upstream and interfere with the three-dimensional

wake of the first body. For separations less than x0/D = 3.0 we observed that

this effect enforced the correlation on the upstream shedding, sometime even

synchronising the wake with the movement of the downstream cylinder.
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6.5 Conclusion

As we have discussed in Chapter 3, the wake-displacement mechanism proposed

by Zdravkovich (1977) seemed to be the most plausible explanation for the WIV

phenomenon, even though he could not conclude how the wake was being displaced

to generate the necessary phase lag to sustain the vibrations.

Based on the results presented in this chapter we can now conclude that it is

the unsteadiness of the wake that is playing a role in the WIV process and not

simply the displacement of a steady flow field. We could say that Zdravkovich’s

‘wake-displacement’ theory needs to be understood more as a ‘vortex-displacement’

mechanism that inputs energy into the system by means of unsteady vortex-structure

interaction as the cylinder oscillates. We may refer to this concept as a ‘vortex-

impulse’ mechanism. To sum up, we list the main findings that support our theory.

6.5.1 Fluid force

Energy input from the fluid to the structure will only occur when there is a phase

lag between fluid force and displacement.

• When the downstream cylinder oscillates across the wake it finds strong

vortices from the upstream body that can induce considerable change in the

lift force. We have shown characteristic flow fields with the most severe vortex-

structure interactions that enhance or diminish lift.

• A phase lag between lift and displacement is most likely to occur in a disturbed

wake that is constantly changing and interacting with the body. Coherent

vortices impinging on the second cylinder and merging with its own vortices

induce fluctuations in lift that are not synchronised with the motion.

• The shear flow experiment proved that a steady shear flow without vortices

cannot excite a cylinder into WIV. Remove the unsteady vortices from the

wake and the response will resemble a typical VIV, only distorted by the

shear flow field.
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6.5.2 Cylinder response

The characteristic response of the second cylinder agrees with the hypothesis for the

fluid force summarised above.

• Irregular envelopes of displacement and lift indicate that the second cylinder

encounters different wake configurations for each cycle. This is not possible in a

steady flow, but is in agreement with an irregular vortex-structure interaction.

• The response of the cylinder decreases as x0 is increased. As the second

cylinder is moved farther downstream, vortices coming from the upstream

wake have more time to diffuse and the induced vortex-structure interaction

is weakened. This is in agreement with the fact that the lift and drag maps

(both steady and fluctuating terms) also diminish with x0.

• Increased three-dimensionality may also contribute to reduce the response.

When the cylinder is positioned farther downstream it weakens the effect of

correlating the upstream wake and oblique or irregular shedding may return.

Less correlation of the wake may be related to less resultant lift acting on the

second body, thus giving a reduced response.

6.5.3 Concluding remarks

We observe that WIV is not a resonant phenomenon. While VIV finds its maximum

amplitude of vibration when fs is very close to f0, WIV keeps increasing ŷ/D even

when fs is much higher than f0. At a first look, fs and f0 are the only two frequencies

present in the system, yet the response of the cylinder is found to be in another

frequency branch; much lower than fs but still higher than f0. Another interesting

fact is that the oscillation frequency is increasing with reduced velocity at a rate

that is not at all correlated with fs.

In the shear flow experiment we removed the upstream shedding frequency of

the system, leaving only fs that is generated in the second cylinder. As a result,

the oscillations returned to a typical VIV response meaning that the upstream
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frequency — or the upstream vortex shedding — was somehow important to sustain

the excitation.

Now, if WIV does not depend in the resonance between f0 and fs, what would

happen if we remove the natural frequency of the system? That is to investigate

what would happen if we remove the springs of the downstream cylinder, making

k = 0 and f0 = 0. This is the topic of the next chapter.
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Chapter 7

Characteristics of the WIV

response

Based on the investigation presented in Chapter 6 we are convinced that the

interaction between the oscillating cylinder and the unsteady wake from upstream

is crucial to sustain the WIV mechanism. The necessary phase lag that drives and

maintains the excitation was shown to originate in this complex vortex-structure

interaction. But one question was still left unanswered: Why is the cylinder

oscillating at a frequency that is distinctively different from both the upstream

vortex shedding frequency (fs) and the natural frequency of the system (f0)?

7.1 Experiment without springs: f0 = 0

WIV turned out to be understood as a non-resonant mechanism with the amplitude

of response increasing far beyond any synchronization range. The fact that the

excitation mechanism is not dependent on the forcing frequency matching f0 gave

us the idea of removing yet another fundamental frequency of the system. In the

previous experiment we made fs = 0 by generating a steady shear profile without

vortices; now we make f0 = 0 by removing the springs of the oscillator.



Fig. 7.1: Arrangement of a pair of cylinders in tandem. The downstream cylinder, mounted without
springs, is free to oscillate in the cross-flow direction.

7.1.1 Experimental set-up

The same experimental set-up was kept from previous experiments but, while m

and c remained unchanged, the pair of springs was removed from the system making

k = 0 and f0 = 0, as presented in Fig. 7.1. Therefore, for a downstream cylinder

immersed in still water there was no structural stabilising force whatsoever to keep

it in position. Cylinders were initially aligned in tandem, but the downstream body

would drift away from the centreline responding to any perturbation coming from

the flow or from the rig.

No other works were found on WIV of cylinders where all stiffness had been

removed. Zdravkovich (1974) performed experiments with a downstream cylinder

mounted on a horizontal swinging arm without springs, but he was still left with a

restoration force generated by the steady flow. The drag acting on the cylinder

generated a stabilising force component towards the centreline — in the same

way the weight stabilises a vertical pendulum in free oscillation — resulting in an

equivalent stiffness generated by the flow. Most of his experiments were concerned

with the gap-flow-switching mechanism, hence were concentrated in the proximity

interference region. For x0/D < 3.5 he observed severe vibrations with a clear

dominant frequency; yet the response was abruptly reduced for separations between

x0/D = 3.5− 7.0 with no clear dominant frequency being identified.

Beyond that critical separation the downstream cylinder was not prone to gap-

flow-switching any longer but entering the WIV region, still the expected build
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up of response was not observed. Zdravkovich’s experiment was performed in air

and his elastic rig presented a very high damping factor of ζ = 0.24. Probably, we

believe, a high value of combined m∗ζ was enough to suppress WIV but not gap-

flow-switching, only suggesting that the content of energy in the first mechanism is

lower than in the latter. Apart from this experiment we have not seen any other

WIV investigation on cylinders mounted without springs — and even in this case

there was still a remaining stabilising force left due to resolved drag.

7.1.2 WIV response without springs

In the WIV response with springs we found that a VIV resonance peak always

occurred around U/Df0 = 5.0, before a pure WIV mechanism could prevail. A

hypothesis is that the cylinder was being excited by VIV up to a condition of motion

(coupled displacement and frequency) from which WIV could eventually take over.

But now, once the springs are removed, we do not expect to see the local peak of VIV

appearing, consequently the cylinder may not be excited into the critical motion for

WIV to start. Would it still be possible to obtain a WIV response without first

passing through a VIV resonance peak?

We already know (Fig. 6.4, page 109) that a static downstream cylinder in

staggered arrangements experiences a steady lift force towards the centreline.

Keeping this stabilising effect in mind, we expect that a free downstream cylinder

mounted without springs would respond in three possible ways:

• Drift sideways. The impulse generated by the vortex-structure interaction

would be strong enough to overcome Cy towards the centreline; the cylinder

would drift away beyond the wake-interference region (static divergence) and

no oscillatory motion would be sustained.

• Remain stable on the centreline. The impulse generated by the vortex-

structure interaction when the cylinder is on the centreline would be too weak

to displace the cylinder and initiate any WIV; the cylinder would find a stable

position on the centreline due to a strong Cy field and no oscillatory motion

would be sustained.
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• Develop oscillatory motion. The impulse generated by the vortex-structure

interaction would be strong enough to displace the cylinder, but the stabilising

Cy would restore the cylinder towards the centreline. A phase lag between force

and displacement would appear to build up the WIV mechanism and sustain

oscillatory motion even without springs.

In principle it appears that the existence of oscillatory motion depends on the

balance between the impulse force from the vortex-structure interaction and the

stabilising lift towards the centreline, at least in a system without springs. But

since both force components depend on the unsteady wake configuration and motion

of the body we cannot predict a priori if the system will respond with sustainable

oscillatory motion — and even if some oscillation is developed there is no indication

that it would resemble the WIV response obtained when springs were present.

Displacement and frequency

Let us now move to the WIV response itself. Fig. 7.2 presents the WIV response

for the downstream cylinder mounted without springs compared with the curve

(already presented) for a cylinder with springs. Both curves were obtained for the

same variation of the flow speed; therefore both data sets share the same Reynolds

number scale. But because the system without springs has no inherent f0 it does

not make sense to plot this curve with a reduced velocity axis. In fact, by making

f0 = 0 we are effectively making U/Df0 =∞ for all points of the response without

springs; the variation of flow speed can only be represented by Re in this case.

From among the three hypotheses presented above, the response certainly agrees

with the third one concerned with sustainable oscillatory motion. Not only the

cylinder was able to sustain oscillations, but most surprisingly the amplitude of

response was remarkably similar to the case with springs. As far as the amplitude

of response is concerned, it appears that the absence of springs is insignificant for

the WIV mechanism. As expected, the local peak of VIV around U/Df0 = 5.0

disappeared once the resonance fs = f0 was eliminated by removing the springs.

But the overall response for both cases, with and without springs, is notably similar.
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Fig. 7.2: WIV response of a downstream cylinder mounted with and without springs at x0/D = 4.0.
Top: displacement; bottom: dominant frequency of oscillation.
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The fact that ŷ/D increases with flow speed is not an effect of reduced velocity.

In other words, the increase in WIV response observed for a cylinder without

springs cannot be related to any structural stiffness. Instead, it seems that the

response reveals some dependency simply on Reynolds number. Since both curves

are essentially very similar, we suggest that an independence of response from

reduced velocity and a dependency on Re might as well be occurring for the cylinder

mounted with springs. We shall return to this subject later on this chapter.

Let us turn now to the frequency of response presented in the bottom graph of

Fig. 7.2. Since f0 is not defined for the case without springs, we can only compare

both curves if they are plotted in dimensional form (1/s). The response with springs

was analysed in Chapter 5, but it is convenient to summarise it here once more:

f follows the St = 0.2 line up to the VIV resonance; follows close to f0 through

a distorted synchronisation range, but eventually continues on a distinct branch

dominated by pure WIV. On the other hand, the frequency of response without

springs shows no effect of VIV synchronisation — that is obvious since there is no

f0 for it to be synchronised with — but follows an almost straight line as the flow

speed is increased. In fact, we note that it follows very closely a dash-dotted line

marked as fw, which we shall explain later.

Another way to analyse this result is to create a non-dimensional parameter

fD/U , a type of Strouhal number, plotted in Fig. 7.3. This way, the St = 0.2 line

presented in Fig. 7.2 becomes a constant in Fig. 7.3 and all the data is distorted to

incorporate the effect of U varying in both axes. We shall return to this graph after

some analytical modelling that will follow in the next sections. Before that we shall

look at the time series of displacement and lift.

Displacement and fluid force

Fig. 7.4 shows three examples of times series for the WIV response without springs.

The flow speed in each case, represented by Re, would correspond to a reduced

velocity of U/Df0 = 10, 20 and 30 for the cylinder mounted with springs. As

mentioned before, the displacement plots on the first column show that the system

is indeed responding with oscillatory motion. Although the frequency of response

145



0 10 20 30 40 50

−2

−1

0

1

2

y
/D

Re = 0.8× 104

−0.5 0 0.5

−2

−1

0

1

2

y
/D

,C
y

0 10 20 30 40 50

−2

−1

0

1

2

y
/D

Re = 1.5× 104

−0.5 0 0.5

−2

−1

0

1

2

y
/D

,C
y

0 10 20 30 40 50

−2

−1

0

1

2

y
/D

Re = 2.3× 104

t/T
−0.5 0 0.5

−2

−1

0

1

2

y
/D

,C
y

t/T
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for around 50 cycles of oscillation. Right column: superimposed plots of similar cycles.
y/D in blue and Cy in red with average cycle in black.
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seems to be rather regular, it is evident that the envelope of amplitude varies from

cycle to cycle throughout the series. The second column presents superimposed plots

of displacement and lift for similar cycles around the average value of ŷ/D given in

Fig. 7.2.

A considerable variation in displacement is evident from the deviation of blue

lines from the average cycle represented in black. But besides that, it is the

irregularity of the lift force that really catches the attention. A clutter of red

lines reveals that almost no cycle is identical to any other and a wealth of higher

frequencies induce Cy to present significant fluctuations within a single cycle of

displacement.

Once more we can note that intense fluctuations in lift help to generate the

phase lag between y and Cy that is necessary to input energy from the flow to the

structure. However, by looking at the average cycle of lift, given by a dashed-black

line, we can still note a lower frequency component almost in antiphase with the

displacement. This term must have some inertia component reacting against the

acceleration of the body — what was called CyP
in Eq. 2.15 (page 33) — but part

of it must also be related to the steady Cy field acting towards the centreline.

Analysing the PSD of Cy in Fig. 7.5 we note that the upstream cylinder is

shedding vortices as an isolated body, with no interference from the motion of the

second cylinder propagating upstream. This was also observed for the case with

springs and there is no reason to expect that it would be different for the same

separation. On the other hand, the PSD of lift on the downstream cylinder shows

two distinct branches of frequency: the higher f(Cy) branch is clearly an effect of

vortex shedding from the upstream cylinder; whereas the lower f(Cy) branch is

promptly identified with the frequency of response in Fig. 7.2.

It is important to note that in this case there is no f0 defined by springs (that is

why f(Cy) has a dimension of 1/s), hence the fact that f(Cy) presents a lower branch

is not associated with any structural stiffness. It is only at the very beginning of the

scale, for Re < 0.3× 104, that we see the vortex shedding branch having more energy

than the lower one; otherwise for the rest of the response the lower frequency branch

clearly dominates the character of Cy. Now, with such a clear preponderance of the
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Fig. 7.5: Normalised PSD of lift force acting on the upstream static cylinder (top) and downstream
cylinder without springs (bottom). Please refer to Appendix A.
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lower f(Cy) branch it is not surprising that the dominant frequency of response

matches this major excitation.

The body is able to sustain oscillatory motion even without any springs to create

structural stiffness. But we are still left with the question about the origin of a lower

frequency force that is not related to either fs or f0. The only possibility left is that

there must be another force acting to restore the body to equilibrium. Since the

body is essentially absent of any structural stiffness, such a stabilising force has to

be coming from the flow itself. That is to say that there must be a fluid force playing

the role of the stiffness in the oscillator, otherwise no oscillatory motion would be

observed.

7.2 The wake stiffness concept

Now that we have observed that the WIV response without springs indeed presented

oscillatory motion — with amplitude increasing with Reynolds number and a

frequency distinct from fs or f0 — we should spend some time to model the problem

of a cylinder with no structural stiffness.

The equation of motion (Eq. 2.3, page 27) has the stiffness term removed if we

make k = 0 for a downstream cylinder without springs, resulting in

mÿ + cẏ = Cy
1

2
ρU2D, (7.1)

where all forces are per unit length of cylinder. Applying the same ‘harmonic forcing

and harmonic motion’ assumption employed to the analyses of VIV for a single

cylinder, where y = ŷ sin(2πft) and Cy = Ĉy sin(2πft+ φ), results in

ŷ

D
=

1

4π
Ĉy sinφ

ρU2

cf
. (7.2)

Notice that neither the mass nor any stiffness comes into the equation, but the

excitation is simply balancing the structural damping of the system given by c

(friction damping per unit length of cylinder). Rearranging Eq. 7.2 into non-

dimensional groups yields

ŷ

D
=

1

4π
Ĉy sinφ

(
U

Df

)(
ρUD

µ

)(µ
c

)
. (7.3)
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Knowing that µ is a physical property of the fluid and assuming that viscous damping

c is only based on the friction of the air bearings, we conclude that µ/c does not vary

with Reynolds number. We are left with three non-dimensional groups that might

have some dependence on flow speed: Cy sinφ is associated with the excitation force

and we shall consider it later; U/Df represents the inverse of a non-dimensional

frequency of oscillation; ρUD/µ is the Reynolds number itself.

7.2.1 Frequency of oscillation and natural frequency of wake

stiffness

Now let us first investigate the behaviour of the non-dimensional oscillation

frequency (fD/U). If we consider the map of steady lift across the wake for

x0/D = 4.0 presented in Fig. 6.4 (page 109) we note that Cy acting towards the

centreline has a rather good linear behaviour between −1.0 < y0/D < 1.0 and

does not vary with Reynolds number. Of course nonlinearities appear for larger

separations, but we can estimate the slope

|∂Cy| ≡
∣∣∣∣ ∂Cy

∂(y0/D)

∣∣∣∣ = 0.65 (7.4)

(represented by a straight line in Fig. 6.4, page 109) within 95% confidence inside

the wake interference region. For convenience, we shall refer to this slope simply as

|∂Cy| from now on.

We know that this steady lift works as a restoring force towards the centreline.

Similarly to the stiffness generated by a spring, the magnitude of Cy increases

linearly with transverse displacement of the cylinder, at least within the wake

interference region. For that reason, the Cy field can be understood as a fluid-

dynamic stiffness generated by the flow; such an effect will be referred to as wake

stiffness from now on. The equivalent spring constant (kw) that would generate

such a flow effect is given by

kw = |∂Cy|1
2
ρU2; (7.5)

thus an equivalent natural frequency fw could also be associated with wake stiffness,
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as expressed by

fw =
1

2π

√
kw

(m∗ + Ca)ρ
πD2

4

, (7.6)

where Ca denotes the potential added mass coefficient.

Since wake stiffness is a fluid-dynamic force, its effect would be equivalent to a

spring with a constant kw that increases with U2 (Eq. 7.5), hence the associated

natural frequency fw increases linearly with Re. Replacing Eq. 7.5 in Eq. 7.6 and

multiplying it by D/U results in the Strouhal-type non-dimensional parameter

fwD

U
=

1

2π

√
2

π

|∂Cy|
(m∗ + Ca)

. (7.7)

We already know that |∂Cy| is invariant with Re. Regarding that Ca cannot vary

with Re either, we conclude that fwD/U is also a constant irrespective of Re.

Turning back to Fig. 7.2 we will note that f for a cylinder without springs

presents a remarkable linear behaviour that grows with Re, which is represented by

an almost constant curve far from St = 0.2 in Fig. 7.3. This suggests that there

must be a fluid force with a characteristic frequency lower than fs dominating the

excitation. Note that this force cannot be related to f0 because the system has no

springs. Therefore we are left with the possibility that this restoration is indeed

coming from the Cy field and must be related to |∂Cy|.
Now if we substitute |∂Cy| = 0.65, m∗ = 2.6 and Ca = 1.0 in Eq. 7.7 we find that

fwD/U = 0.054 and can be represented by the fw dot-dashed line in Figs. 7.2 and

7.3. The agreement between fw and the WIV response without springs is remarkable.

This is evidence that a cylinder without springs may as well be responding to the

wake stiffness with f = fw for the whole range of Re. That is to say that the

excitation frequency identified in the lower branch of f(Cy) in Fig. 7.5 — that

matches the response frequency f in Fig. 7.2 — is actually governed by the wake

stiffness effect described in Eqs. 7.5 to 7.7.

If it is true that f = fw, Eq. 7.7 tells us that fD/U is also a constant and the

cylinder indeed oscillates with f that increases linearly with Re. In Fig. 7.2 we note

that f closely follows fw up to around Re = 1.5× 104 when the response amplitude

reaches about ŷ/D = 1.4. Beyond this point the amplitude grows towards values
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around ŷ/D = 1.8 meaning that the cylinder is oscillating further out of the wake

interference region. From the Cy map for x0/D = 4.0 (Fig. 6.4) we know that the

steady lift grows linearly with lateral separation up to around y0/D = 1.0. Farther

than that nonlinear effects start to appear and the wake stiffness is not able to be

represented simply by the slope |∂Cy| = 0.65 but would gradually be reduced. This

is exactly what is observed as the frequency curve begins to depart from the fw line

as ŷ/D increases. Of course some effect in reducing f must be coming from the

fact that secondary effects in the effective added mass of fluid may appear as the

cylinder moves in and out of the wake interference region. But even considering

that the effective added mass is constant at Ca = 1.0 throughout Re the agreement

is still very good.

Although it might be helpful to think the wake stiffness effect is acting as a linear

spring, a quasi-static lift map still is an oversimplification of the problem. If the

restoring fluid force towards the centreline is induced by complex vortex-structure

interactions — as we have proposed in Chapter 6 — it should also present unsteady

variations as the cylinder moves across the wake. However we can still imagine that if

the cylinder is displaced farther away from the wake interference region (y/D � 1.0)

the induced force on that instant must be reduced. On the other hand, if in another

instant the cylinder is located closer to the wake boundary the vortex-induced force

must be amplified.

For that reason we could understand that the total excitation force as being

composed of two fluctuating terms with distinct frequencies. One term is associated

with the wake stiffness, which obviously depends on the position of the body across

the wake and is related to f . The other is associated with the impulse vortex-force

induced on the cylinder, which also depends on the lateral position of the cylinder

and is thus related to fs. We believe that while a series of vortices streaming

along the wake induces a steady force towards the centreline, each individual vortex

also induces an instantaneous force fluctuation (an impulse) on the cylinder. The

magnitude of both wake-stiffness and vortex-impulse terms will depend on the

relative position of the body and a particular interaction with the wake.
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7.2.2 VIV and WIV resonances: fs = f0 and fw = f0

If the wake-stiffness is dominant over the vortex-impulse term it is straightforward

to predict that the cylinder should respond with f = fw and not f = fs. As we

have seen so far fwD/U does not vary with flow speed, thus fw increases linearly

with Re. Since f0 is a constant defined by the springs, there must be a critical

point where the wake stiffness has the same intensity as the spring stiffness, i.e.

kw = k and fw = f0. This occurs in Figs. 7.2 and 7.3 where fw crosses the f0 line at

Re = 1.2×104 (equivalent to U/Df0 = 18.8 for the case with springs). We know that

the present set of coil springs provides the system with a stiffness of k = 11.8N/m.

But considering the steady lift map with |∂Cy| = 0.65 in Eq. 7.5 we see that the

wake stiffness can reach values as high as kw = 34N/m at the end of the Re range

of the experiments.

For the case with springs we find f following closer to the f0 line during the range

where VIV is relevant, with the lock-in peak occurring around the intersection of f

with both f0 and St = 0.2 lines. This first VIV resonance is marked by the vertical

line fs = f0 in Figs. 7.2 and 7.3. At this point kw = 1.8N/m is only 15% of k

provided by the springs. As the flow speed is increased the VIV synchronisation

tends to disappear as St = 0.2 moves away from f0. At the same time the wake

stiffness is also getting stronger until both kw and k have the same value. As we

saw, this occurs for U/Df0 = 18.8 and is marked by the second WIV resonance line

fw = f0, beyond which kw is greater than k.

The two resonance lines divide the response for a cylinder with springs in three

regimes that are best identified in Fig. 7.2. (i) Before fs = f0, when St = 0.2 is

approaching f0, the displacement resemble an initial branch of VIV and f follows

the Strouhal line up to the resonance peak. (ii) The second regime, between fs = f0

and fw = f0, is marked by a steep slope in the displacement curve; f remains rather

close to f0 as the VIV synchronisation range gradually gives way to a wake stiffness

that is growing stronger with Re. (iii) The third regime, beyond the second resonance

fw = f0 is characterised by a change of slope in both the displacement and frequency

curves. With kw > k the WIV response is established and dominates alone for the
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rest of the Re range.

It works as if the set of springs is important only in the first regimes before the

fw = f0 resonance, but the system completely overlooks its small structural stiffness

given by f0 as kw gets relatively stronger. It appears that out of the resonances

fs = f0 and fw = f0 the spring acts against the WIV excitation with the effect of

reducing the amplitude of vibration. This idea is in agreement with the classical

theory of linear oscillators; if the excitation force is out of the resonance of the

system the response will not be as high as the resonance peak.

Various experiments have investigated the flux of energy in the system for a

cylinder oscillating in forced vibrations in a flow. Recently, Morse & Williamson

(2009) have presented a detailed energy map for VIV of a single cylinder. If we take

values of displacement and frequency from our own WIV curves and plot them in

their VIV energy map we will see that the structure is actually losing energy to the

flow. If we think that the major forcing term is coming from the WIV mechanism

governed by wake stiffness, the VIV part governed by spring stiffness is contributing

to dissipate energy and reduce the vibration. That is why the response curve with

springs shows reduced amplitude out of the two resonance lines when compared

with the case without springs. Because our excitation force is believed to have a

wake-stiffness and a vortex-impulse component, each related to one characteristic

frequency, the response will be slightly accentuated when fs = f0 (VIV resonance)

and fw = f0 (WIV resonance).

Possibility of a third resonance fs = fw

One could ask if it would be possible to have a third resonance fs = fw, potentially

occurring also for a cylinder without springs. Since both fs corresponding to St = 0.2

and fw are linearly dependent on Reynolds number, they would have to be equal

throughout the whole Re range. Starting from Eq. 7.7 and considering that the

Strouhal number of a cylinder is roughly constant with Re, there are only two ways

to bring both St = 0.2 and fw lines together.

Firstly, fixing the mass of the system we would have to generate a steady lift field

with |∂Cy| = 8.9 which is one order of magnitude higher than the maximum value

154



measured for staggered cylinders. Now, if the steady lift towards the centreline has

its origin in the unsteady vortex-structure interaction (as proposed in Chapter 6)

both fs and fw originate in the same phenomenon and have to coexist within physical

boundaries. By this we mean that the wake structure required to generate such

an intense steady field would have to be very different from the vortex shedding

mechanism that we know. Therefore we do not expect fs = fw due to an intense Cy

field.

Secondly, knowing that |∂Cy| is invariant with Re, we can change the mass of

the system in order to change the natural frequency fw. Keeping |∂Cy| = 0.65 and

Ca = 1.0 constants in Eq. 7.7 and equating the right-hand side to St = 0.2 results in

m∗ = −0.74. Since this result is impossible in a physical system we can affirm that

St = 0.2 and fw will never overlap.

In fact, since we know the cylinder is responding to WIV with f = fw, to have

fw = fs means that the cylinder would be oscillating in the frequency of vortex

shedding for the whole Re range. This is the WIV equivalent of the phenomenon

described by Govardhan & Williamson (2002) for VIV of a single cylinder. They

verified that for m∗ below a critical value around 0.54 the VIV response would

persist for an infinite regime as if the lower branch were extended indefinitely. It

was observed that the frequency of oscillation f would follow the vortex shedding

frequency fs, linearly increasing with reduced velocity, sustaining a regime they

called ‘resonance forever’. Although this appears to be physically impossible to

occur in our case, we cogitate that if we could artificially bring both St = 0.2 and fw

lines together — in a force feedback system this would be possible — the cylinder

would vibrate indefinitely with both VIV and WIV perfectly combined.

7.2.3 Response without springs in a shear flow

In Chapter 6 we have seen that the unsteadiness of the wake was necessary to excite

WIV. A cylinder immersed in an artificial wake without vortices did not respond

with WIV but only a distorted type of VIV. In the present chapter we investigated

the importance of the wake-stiffness effect in sustaining the vibration of a cylinder
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mounted without springs. Finally, we can combine both concepts of wake-stiffness

and vortex-impulse in the response of a cylinder immersed in a shear flow (without

unsteady vortices) but also without springs (without structural stiffness).

To allow for comparison with other response curves, the result is presented in

Fig. 6.17 (page 127). Although some small wake-stiffness effect was left in the

shear flow after vortices were removed — a |∂Cy| ≈ 0.2 can be estimated from

Fig. 6.15 (page 124) — it was not strong enough to sustain oscillatory motion and

the cylinder did not respond with vibrations. If our theory is correct, we need to

bring the excitation term from the vortex-structure interaction acting together with

the wake-stiffness effect in order to produce a WIV response.

A clear response was observed for the reference cases with and without

springs because the system had unsteady vortices to provide both vortex-structure

interaction and wake stiffness. By removing the unsteadiness of the upstream wake

we are essentially left without the WIV excitation term, therefore the response will

be that of VIV. But by removing both the unsteadiness of the wake and the springs

at the same time we are left with no response at all.

7.3 Dependency on Reynolds number

Back to Eq. 7.3, we can now analyse the behaviour of the non-dimensional parameter

Ĉy sinφ in respect of Reynolds number. We already know that the cylinder is

responding with f = fw, a dominant frequency produced by the wake stiffness effect.

In the harmonic assumption applied in Eq. 7.1 we only consider that the fluid force

is represented by a single dominant frequency and phase angle. But in Figs. 7.4 and

7.5 we clearly saw that Cy in fact presents two significant frequencies: a lower branch

associated with wake stiffness and a higher branch associate with vortex-impulse.

But still holding a bit longer to the harmonic hypothesis we could split the actual

effect of Cy into two parts. Because fw is clearly dominant over fs let us consider

that the magnitude of Ĉy is only produced by the wake stiffness effect and has

very little influence from vortex-impulse fluctuations. Consequently, the fluid force

would have a dominant component f = fw, with magnitude depending only in |∂Cy|
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Fig. 7.6: Comparison between lift coefficient (top) and phase angle (bottom) for the WIV response
of a cylinder with and without springs at x0/D = 4.0.

and acting in antiphase with the displacement. (Again we are entering quasi-static

territory, but at least now we are supported by having U/Df0 =∞.)

On the other side, we need to account for the phase lag necessary to sustain the

vibration. We have already proposed that it is generated by the complex vortex-

structure interaction as the body crosses the wake, therefore we could attribute the

existence of φ 6= 0◦ and 180◦ to vortex-impulse fluctuations operating at fs.

We have shown in the previous section that |∂Cy| does not vary with Re, therefore

Ĉy should also be invariant. But we have also demonstrated that, due to fluctuations

caused by vortex-impulse, the phase angle varies from cycle to cycle as the cylinder

interacts with different wake configurations. Albeit not being very strong, this

supposition finds some support in the time series presented in Fig. 7.4. Therefore,

let us now investigate Ĉy and φ independently.

Fig. 7.6 compares the total lift coefficient for both WIV responses with and

without springs. An abrupt reduction in Ĉy for the case with springs is characteristic
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of the VIV phase shift and occurs at the fs = f0 resonance. We can still note some

differences between both cases while VIV is losing strength between the resonances,

but yet it is beyond the resonance fw = f0 that WIV clearly dominates and both

curves follow closely together for the rest of the Re range. Apart from a small range

of Re < 0.5×104, Ĉy without springs shows a fairly constant behaviour with a small

negative slope.

The bottom graph of Fig. 7.6 compares average values of φ for WIV responses

with and without springs. Each data point was obtained by employing the

Hilbert transform to calculate instantaneous values of phase angles (as presented

in Fig. 6.18) and then averaging φ for more than 500 cycles of oscillation. The curve

shows that φ without springs presents a relatively constant value around 153◦ for

Re > 0.5× 104.

Although both Ĉy and φ appear to be fairly invariant with Re, we cannot forget

that values plotted in Fig. 7.6 are averaged for as many as 500 cycles of oscillations.

We have already seen in Fig. 7.4 how irregular Cy can be from cycle to cycle.

Variations within the present Re range are also expected to occur due to the complex

characteristic of the wake. For example, it is known that the vortex formation length

presents a strong variation with Re; and the three-dimensionality of the wake may

as well present some Re dependency. Nevertheless, although Ĉy and φ cannot be

confirmed as strictly constants we are able to conclude that, to a first approximation,

the non-dimensional term Ĉy sinφ should be roughly invariant with Re, at least

within the subcritical Re range of the experiments.

Turning back to Eq. 7.3 we can now verify that µ/c, U/Df and Ĉy sinφ are

approximately invariant with Re, leaving only the Reynolds number term itself on

the right-hand side of the equation. As a result it is evident from this analysis that

ŷ is linearly dependent on Re and the WIV response should increase with flow speed

up to a critical amplitude. Once the cylinder starts to be displaced out of the wake

interference region nonlinear effects become important limiting the response to an

asymptotic value. Secondary effects may be acting on U/Df and Ĉy sinφ conferring

on the response the curved shape presented in Fig. 7.2.

The analysis developed above is in good agreement with displacement curves
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presented for both cases with and without springs. Therefore we conclude the

mechanism that is building up the amplitude of vibration in WIV is definitely not

a consequence of reduced velocity but a direct effect of Reynolds number.

Picking a displacement point from the curve without springs at an arbitrary value

of Re = 2.3×104 (represented by a vertical arrow in Fig. 7.2) we are able to estimate

the limiting value the response is asymptotically approaching to as U/Df0 →∞ for

that specific Re. Of course this is the data point from the curve without springs

immediately above the vertical arrow, but it can also be represented on the right-

hand side axis for U/Df0 =∞ (this will be useful later when comparing different

x0 separations).

Such a strong Re dependency turned out to be a rather unexpected result. It

took us some time to comprehend how a fluid-elastic system could show considerably

high variations in such a short Re range. But if we consider that our system actually

possess a fluid-dynamic spring that increases stiffness with U2 (Eq. 7.5) we are left

with the only conclusion that ŷ/D must indeed vary with flow speed.

7.3.1 Experiments with constant Re

At this point one may recall the results from Hover & Triantafyllou (2001),

presented in Fig. 3.8(b) (page 55), who measured the WIV response of a cylinder

at x0/D = 4.75 and constant Re = 3× 104. They achieved that by varying the

spring stiffness of a force-feedback system. In spite of operating at a fixed Reynolds

number, they were able to measure a build up of response that increased with

reduced velocity. In principle, this seems to contradict our theory that the WIV

response is not affected by reduced velocity.

Considering that their separation of x0/D = 4.75 must provide a wake stiffness

effect in the order of |∂Cy| = 0.55, we can estimate that the critical reduced velocity

at which the wake stiffness equals the spring stiffness (kw = k) is as high as

U/Df0 = 21 (based in our Cy map of Fig. 6.1, Ca = 1.0 and their value of m∗ = 3.0).

However, the maximum reduced velocity achieved in their experiment is only around

17. Hence the regime Hover & Triantafyllou (2001) observed was still between the
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Fig. 7.7: WIV response at constant Re for x0/D = 4.0. Reduced velocity varied by changing the
springs.

resonances fs = f0 and fw = f0, a region where VIV still has some significance.

According to our theory, we would expect their results to reach an asymptotic

value around ŷ/D = 1.5 for Re = 3 × 104, which is in good agreement with their

curve reproduced in the present work. Note, however, that Hover & Triantafyllou

(2001) do not plot ŷ/D but an average of the 10% highest peaks of displacement.

As we have seen in Fig. 5.7 (page 95) the maximum displacement of the cylinder

can be considerably greater than the averaged ŷ/D that we usually employ.

The same observation is also true for the results obtained by Assi et al. (2006)

also presented in Fig. 3.8(b). Even though k was constant, they could not reach the

regime above the WIV resonance fw = f0 due to a limitation in the maximum flow

speed.

In order to verify this phenomenon, we have prepared a series of experiments

for three constant Reynolds numbers at x0/D = 4.0. The flow speed was fixed

and reduced velocity was varied by changing the set of springs and, consequently,

changing f0. Fig. 7.7 presents the results compared to our reference WIV response

of a cylinder with fixed springs and varying U/Df0 by varying flow speed (the

secondary axis of Re refers to this curve only).

Three vertical arrows, one for each Re curve, mark the condition where the
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stiffness of the varying spring matches the fixed spring k. Hence all data points to

the right of these arrows have a spring that is softer than our reference curve (and

stiffer to the left). None of the curves was able to span the three regimes defined

by the resonance lines fs = f0 and fw = f0, but considering the results of all three

curves as a whole we are able to understand the general behaviour of the response

at a constant Re.

The curve for Re = 9600 does not have enough data points to reveal a local peak

of VIV at fs = f0, but the majority of the points fall within the first regime between

the resonances, where VIV is gradually losing its influence to WIV. In our experiment

with varying Re we have noticed that the amplitude of response generally presents

a positive slope in this first regime; this is verified now for a constant Re as well. As

we have discussed above, Hover & Triantafyllou (2001) found increasing response

also for a constant Re in this regime. Our data agrees with theirs in showing a build

up of response between fs = f0 and fw = f0. Such an effect is also observed for our

curve at Re = 19200.

Let us move on to the other curves at Re = 14500 and 19200 that are able to

cross fw = f0 and enter the second regime where WIV dominates. Now that the wake

stiffness is greater than the spring stiffness we see that the response is not influenced

by reduced velocity anymore, but presents a rather constant level of amplitude for

each fixed value of Re. Even if the reduced velocity is increased from 20 to 35 the

amplitude of response seems not to be much affected and the data points appear

to follow the same trend as long as Re is kept constant. Going back to the curve

without springs in Fig. 7.2 we are able to find a displacement amplitude for each of

our Re curves at U/Df0 =∞ towards which the data points should be converging.

We note that they are slightly higher than the level of amplitude the curves are

reaching beyond fw = f0, but we have to remember that we are still operating with

springs, although soft ones, that might be contributing to reduce the response away

from the resonance lines.

While on one hand the VIV peak at fs = f0 seems to always reach ŷ/D around

1.0 (for this value of m∗ζ), the amplitude at the end of the first regime, at fw = f0,

varies with the intensity of the wake stiffness effect. Because kw increases with Re

161



the amplitude at fw = f0 must also increase with Re. This level of amplitude is

already very close to the asymptotic value predicted by the experiments without

springs; hence, as the spring stiffness gets softer beyond fw = f0, we expect the

curves to be converging towards the values plotted at U/Df0 =∞.

This series of experiments at constant Re proved that while the response below

fw = f0 is dependent on both Re and reduced velocity, the response for fw > f0 is

clearly governed by Re only. In other words, we conclude that in the first regime

where VIV and WIV are competing (or cooperating) the response increases due to

a combination of spring and wake-stiffness effects. Even with constant Re we note

a build up of response while the ratio between k and kw makes reduced velocity

an important parameter. But once the wake stiffness becomes dominant over the

springs the response takes no note of the structural stiffness and is only governed by

wake stiffness. Now this second regime is clearly dominated by a Reynolds number

effect.

7.3.2 Equivalent damping

Another way to comprehend the behaviour of the amplitude of response is to think

in terms of an equivalent damping ratio. As we saw in Eq. 2.7 (page 28) we can

define ζ by the ratio between c and a critical damping, rewritten as

ζ =
c

4πf0m
. (7.8)

Note that the natural frequency and the mass of the system are present in the

denominator.

Apart from removing the pair of springs we kept exactly the same set-up from

previous experiments, therefore we assume all other parameters were kept constant

including the structural damping c. In other words, we presuppose the friction in the

air bearings was kept the same; hence the system would dissipate the same amount

of energy for a similar velocity of the cylinder. However, now that the springs were

removed we do not have f0 that can be used to non-dimensionalise ζ as expressed

in Eq. 7.8.
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Govardhan & Williamson (2002) also encountered problems to define a suitable

damping ratio when performing experiments with a cylinder mounted on air bearings

without springs. They also wanted to investigate the VIV response for U/Df0 →∞
and achieved that by removing the springs from the elastic system, making k = 0

and f0 = 0. Since there were no springs, but f followed the shedding frequency

throughout the oscillatory regime, they employed an equivalent damping ratio non-

dimensionalised by fs instead of f0.

But in the present WIV investigation the frequency of oscillation was observed

not to follow the vortex shedding frequency; instead f increases linearly with

flow speed following fw — the natural frequency given by wake stiffness — as

demonstrated above. Therefore, unlike in Govardhan & Williamson (2002), it

does not make sense to define an equivalent damping ratio based on the shedding

frequency fs, but based on the oscillation frequency f = fw instead, hence

ζw =
c

4πfwm
. (7.9)

According to this definition of ζw the damping ratio varies with flow speed since

fw is also varying with U (Eq. 7.6). The same occurred for Govardhan & Williamson

(2002), where their damping ratio was based on fs which also varies with U according

to the Strouhal law. (This was not the case with the traditional ζ as defined in

Eq. 2.7, which is invariant with U given a constant natural frequency f0 defined by

structural stiffness.)

Now, replacing c from Eq. 7.9 into Eq. 7.3 results in a combined m∗ζw parameter

appearing in the denominator

ŷ

D
=

1

4π
Ĉy sinφ

(
U

Df

)2(
1

m∗ζw

)
. (7.10)

Similarly to the analysis presented for VIV of a single cylinder in Chapter 2

we can observe that the amplitude of response should be inversely proportional to

this new m∗ζw. However this time the combined mass-damping parameter is not

constant but incorporates a variation with flow speed. Because fw increases with

Re, ζw decreases with flow speed and, thinking about an equivalent damping term,

we reach the same conclusion that the response should in fact increase with Re.
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7.4 Wake stiffness for other separations

Now that we have analysed the WIV response for a pair of cylinders at x0/D = 4.0

we shall bring the wake stiffness concept back to our starting point and investigate

the effect it has on other separations. We already know that moving the second

cylinder farther downstream does not affect the wake formed in the gap, i.e. the

upstream vortex shedding process is not affected if the separation changes from

x0/D = 4.0 up to 20.0, the last case investigated in the present work.

The development of a von Kármán wake from a static cylinder has been diligently

studied in the literature. Schaefer & Eskinazi (1958) performed experiments in a

wind tunnel in order to model the effect of fluid viscosity in diffusing a vortex from

the instant it is shed from the cylinder. The core of concentrated circulation expands

with time as vortices travel downstream towards the second body, so if the cylinder is

farther away we expect weaker vortices (at least with less concentrated circulation)

to reach that specific position of the wake. Weaker vortices induce weaker fluid

forces, therefore we would expect both wake-stiffness and vortex-impulse terms to

decrease with increasing x0.

Looking back at the steady lift map presented in Fig. 6.1 (page 106) we see that

the maximum Cy is indeed decreasing for larger separations, consequently |∂Cy|
is also reduced with increases in x0. To a certain extent it is straightforward to

think that the wake stiffness effect is inversely proportional to x0 and results in

lower values of fwD/U for larger separations. As a consequence, the frequency of

oscillation should also be reduced. However, Eq. 7.3 tells us that the amplitude must

increase if fD/U is reduced and all other terms are kept constant. This is clearly

not observed in the response with springs presented in Fig. 5.5 (page 92). Instead

ŷ for the WIV regime is seen to be reduced with increasing x0, up to a separation

where no effect from the upstream wake can be sensed by the downstream cylinder

and it returns to a simple VIV regime. Therefore, some other non-dimensional terms

in Eq. 7.3 must be dominating over the effect of fD/U to reduced the response as

x0 is increased.

Fig. 7.8 presents the effect of x0 on the response of a cylinder mounted without
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Fig. 7.8: WIV response of a downstream cylinder mounted without springs at various x0

separations. Top: displacement; bottom: dominant frequency of oscillation.
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springs. In accordance to Eq. 7.3, the amplitude of displacement should increase

with Reynolds number for a fixed separation, while ŷ should be reduced for larger

separations if Re is kept constant. Although this plot is not as densely populated

with data points as Fig. 5.5 it can still reveal the overall behaviour of the response in

relation to Re and x0. The main difference now being that no VIV resonance peak

is identified because the system lacks any f0 conferred by springs, but still the WIV

response seems to diminish as the second cylinder is moved farther downstream.

Remember that every point in Fig. 7.8 represents an infinite reduced velocity.

Therefore variations observed in the curves are an effect of Re and x0 only. Repeating

the same process employed above, we can pick one data point from each x0/D curve

at Re = 2.3× 104 and plot them back in Fig. 5.5 (page 92) at U/Df0 =∞. Every

point plotted there on the right-hand side axis represents the asymptotic value the

response would reach if Re were kept constant beyond the vertical dashed line of

2.3× 104. This agreement confirms that beyond the flow speed range in which VIV

is important reduced velocity has no effect on the WIV response and the cylinder

is expected to sustain a constant level of vibration for the rest of the Re range. It

is also verified that the asymptotic value that limits ŷ is indeed a function of Re

and x0 alone and must be related to the actual configuration of the wake at those

conditions.

As we saw in Fig. 7.2 for x0/D = 4.0 the frequency of oscillation shows a fairly

linear behaviour with Re, which is represented by a constant line when plotted non-

dimensionally as fD/U in Fig. 7.3. Interestingly, we know that as far as separation

is concerned |∂Cy| decreases with x0. But when this effect is reflected into fw it

seems to cause only a small variation in the frequency of response, making all f

curves for different x0 collapse over each other. A similar result was observed in

Fig. 5.5 for the response with springs, where, differently from the displacement, f

does not show much variation with x0.

Considering our smallest separation of x0/D = 4.0 we saw that the steady lift

field generates, to a first approximation, a wake stiffness effect proportional to

|∂Cy| = 0.65 (Fig. 6.4). Again we can plot fw (Eq. 7.6) associated with this steady

field as a dot-dashed line in Fig. 7.8. However, moving the second cylinder farther
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downstream in the wake we saw that |∂Cy| is reduced. Considering the maximum

separation measured in the Cy map of Fig. 6.1 (page 106) we can estimate a wake

stiffness effect proportional to |∂Cy| = 0.45 for x0/D = 6.0. If we then plot fw

associated with this weaker wake stiffness in Fig. 7.8 we are able to verify that the

expected variation for f between both separations is actually rather small. This is

made even clearer when the data is plotted in the non-dimensional form of fD/U

in Fig. 7.9

Turning back to our analysis of Eq. 7.3 versus separation, we conclude that the

variation of fD/U versus x0 may be rather small and unlikely to dominate over

other non-dimensional groups. Leaving us with Ĉy sinφ that might present some

significant variation with x0.

As suggested above, the diffusion of vortices in the wake may be responsible for

the reduction of the wake stiffness effect observed in Fig. 6.1. But since we argue that

both wake-stiffness and vortex-impulse terms originate in the same phenomenon, we

believe that vortex diffusion may also be responsible for changes in Ĉy sinφ versus

x0.

Fig. 7.10 presents the variation of Ĉy and φ with both Re and x0. We have shown

in Fig. 7.6 that Ĉy has a small dependency on Re, resulting in a mild decreasing

slope for x0/D = 4.0. However, as separation is increased in Fig. 7.10 we observe

that not only the overall level of Ĉy is reduced, but also the negative slope with

Re is accentuated. On the other hand, the bottom graph shows that although φ

is roughly constant with Re it is also reduced for larger x0. Now, depending on

the combination of both terms Ĉy sinφ can show significant variation with x0, as

much as to dominate over fD/U and govern the behaviour of the response versus

separation.

7.5 Conclusion

In Chapter 6 we have concluded that the WIV excitation mechanism has its origin

in the unsteady vortex-structure interaction encountered by the cylinder as it

oscillates across the wake. It was possible to verify that a phase lag between y
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and Cy could drive and sustain the mechanism, but we were not able to understand

how that excitation could result in the displacement and frequency signature that

characterised the WIV response.

In the present chapter we have introduced the concept of wake stiffness, a fluid

dynamic effect that can be associate, in a first approximation, with a linear spring

with stiffness proportional to |∂Cy| and Re. By a series of experiments with a

cylinder mounted without springs we verified that such wake stiffness was not

only strong enough to sustain oscillatory motion, but could also dominate over the

structural stiffness of the system.

The main findings of this chapter are summarised in the section that follows.

7.5.1 Characteristics of the WIV response

Response without springs

A cylinder mounted without springs is able to develop oscillatory motion and the

response showed a strong dependency on Reynolds number.

• The restoration force provided by wake stiffness is strong enough to balance the

flow excitation and produce oscillatory motion. The cylinder was not observed

to drift away from the centreline, but presented WIV throughout the Re range

of the experiments.

• The analytical modelling for a system without springs revealed that the

amplitude of response should increase with Reynolds number. This was verified

by experimental data. However, a simple model that did not account for

nonlinear effects in the fluid force was not able to predict the correct level of

amplitude.

• We found that the WIV response should converge to an asymptotic value

that depends only on Re. As ŷ/D is increased beyond a certain limit the

cylinder starts to reach amplitudes out of the wake interference region. The

wake stiffness effect cannot be represented by a linear spring anymore, but the
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overall stiffness tends to be reduced. This effect was in agreement with cases

with and without springs and also with various x0 separations.

• A simple linear model was able to predict the frequency of response rather well.

It was confirmed that the cylinder without springs does not respond following

the vortex shedding frequency fs. Instead the response matches the frequency

branch fw associated with wake stiffness, which was well predicted by the

model. A cylinder with springs responds with a frequency that combines some

effect from fw and f0, yet different from both.

WIV regimes for a cylinder with springs

In our experiments we observed a gradual transition from an initial VIV regime to

a dominating WIV regime as flow speed was increased. The boundaries between

them were found to be related to two resonances: fs = f0 and fw = f0.

• The first regime has a clear VIV character, with a local peak of displacement

occurring at fs = f0. The wake stiffness is still smaller than the spring stiffness,

making U/Df0 a significant parameter. The amplitude of the VIV peak is in

agreement with the response curve for a single cylinder and does not depend

on Re.

• The second regime is characterised by an established WIV response that suffers

no influence of VIV. Beyond fw = f0 the wake stiffness effect is dominant over

the spring stiffness and reduced velocity becomes irrelevant. The amplitude of

response is governed by Re and tends towards an asymptotic value estimated

by experiments at U/Df0 =∞.

• During the transition between both regimes we find an intermediate condition

in which VIV is losing strength and WIV is taking control. Between the

resonances fs = f0 and fw = f0 the response takes off from the VIV peak until

it reaches a characteristic value at fw = f0 that is dependent on Re. During

the transition, reduced velocity gradually loses its influence until the WIV

response is only dominated by Re as it enters the second regime.
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• The total stiffness of the system is not only caused by either the wake

stiffness (kw) or the spring stiffness (k) alone, but it is a combinations of

both. k is very relevant in the first regime, but kw becomes dominant in the

second. Nevertheless, both k and kw contribute in parts to the characteristic

displacement and frequency responses.

Effect of centre-to-centre separation

As expected, the x0 separation between both cylinders was confirmed to have a

significant effect over the response. We suggest this effect is related to an increase

in vortex diffusion and flow three-dimensionality as the gap is enlarged.

• The WIV response changed as the second cylinder was moved farther

downstream. The first VIV regime suffered no influence of x0 and the

local resonance peak kept the same level of displacement for all separations

between 4.0 and 20.0. On the other hand, the second WIV regime showed a

strong influence of the separation. The characteristic WIV branch of response

gradually disappeared with increasing x0 until the response resembled only

that of a typical VIV phenomenon.

• In contrast with the displacement, the frequency of oscillation showed only

a small variation with x0, with curves for all separations collapsing over the

value predicted by the wake stiffness effect, especially for the case without

springs.

• Such a strong x0 dependency was associated with the fact that vortices

from the upstream cylinder have more time to diffuse as they travel to

reach a cylinder located farther downstream. Together with that is the

fact that increase three-dimensionality of the flow also weakens the coherent

wake. Weaker vortices induced weaker forces. Both the wake-stiffness effect

(proportional to |∂Cy|) and the vortex-impulse term (related to Ĉy sinφ) are

affected.
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7.5.2 Concluding remarks

The experiment without springs was crucial in the understanding of the phe-

nomenon. It not only revealed the existence of a dominant wake stiffness effect

that can sustain vibrations even if springs are removed, but also helped to explain

different regimes of the response when springs are present. We proved that Cy

towards the centreline not only provides some restoration for a quasi-static system

but is in fact responsible for the characteristic WIV response of a cylinder that is

free to vibrate.

The wake stiffness concept does not explain the excitation mechanism but it

predicts rather well the characteristic signature of the WIV response both in terms

of displacement and frequency. We can say that while unsteady vortex-structure

interactions provide the energy input to sustain the vibrations, it is the wake stiffness

phenomenon that defines the character of the WIV response.

Need for an improved, nonlinear model

By modelling a linear oscillator without springs but incorporating the stiffness as a

consequence of the fluid force (wake stiffness) we were able to predict the frequency

behaviour rather well. But no matter how good this approach was in regards to the

frequency response, the displacement response is somewhat more complex and is not

fully captured by this first approximation. We believe this is due to the simplicity

in modelling the term Ĉy sinφ. Although in some analysis we have considered Ĉy

and φ to be independently related to the wake-stiffness and vortex-impulse terms,

we are fully aware that this decomposition is not ideal and must overlook significant

secondary effects.

A simple harmonic model as the one we have employed cannot account for

nonlinear effects that might be important to the system. It will not be able,

for example, to predict the asymptotic effect that is limiting the displacement.

The complex interaction between body and wake causes |∂Cy| and Ĉy sinφ to be

coupled in such a way that we cannot simply analyse them independently. Since

we believe both wake-stiffness and vortex-impulse terms originate in the same fluid
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mechanic phenomenon, we are not able to uncouple and isolate their effects into

linear concepts.

We argue that an improved, nonlinear model is necessary to account for more

complex fluid-dynamic phenomena that we have identified to exist but were not

considered in our model.

WIV and classical galloping

In previous chapters we have discussed the idea that WIV could be understood by

the classical galloping theory. Remember that WIV had been referred to as a type

of galloping mostly because the typical response presents a build up of amplitude

for higher reduced velocities. But now we know that the response is increasing due

to the wake stiffness effect as a function of Reynolds number. We have been arguing

that quasi-steady assumptions commonly employed by the classical galloping theory

would not fit the WIV phenomenon nor help the understanding of the real flow-

structure mechanism. For that reason we have been insisting on a dissociation of

WIV from the classical galloping idea.

In the present chapter we have shown that WIV is indeed a wake-dependent type

of FIV. Remember that according to the classical galloping theory the oscillations

of the body were dependent on the structural stiffness of the system to provide the

restoration force. Even more for the wake-flutter phenomenon of interfering cylinder

(Chapter 3, page 61), where structural stiffness in 2-dof is required. In our case,

however, we showed that a body without any structural stiffness can be excited into

FIV. If some stiffness is provided by the flow, the body is able to be excited and

sustained into oscillatory motion.

The concept of wake stiffness is a powerful one but it is also requires the existence

of an unsteady vortex wake present in the gap. The importance of the unsteady

wake is central. Therefore we continue to propose that WIV is not to be understood

as a type of classical galloping, but must be interpreted as wake-excited and wake-

sustained FIV mechanism.
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Chapter 8

Suppression of VIV and WIV with

drag reduction

The suppression of vibrations induced by the flow became a real concern for the

offshore industry when oil exploration moved towards the so called ultra-deep

waters. Nowadays, a single floating platform is able to accommodate more than

40 production risers in complex arrangements together with many other cylindrical

structures. As the ocean current changes its direction through the sea depth it

becomes practically impossible to prevent flexible structures from falling in the wake

of each other. As a result, the high probability of pipes developing WIV increases

the risk of damage due to structural fatigue as well as the possibility of clashing

between them.

Several suppression solutions have evolved with the offshore industry, some

inspired by fundamental aspects of FIV phenomena, some as a consequence of

empirical tests. But one lesson was learned: the more we understand the physical

flow mechanism the better we can improve our suppression solutions. Now that we

know the WIV mechanism combines the vortex shedding of the second body with

unsteady interference coming from the upstream wake we have a good possibility to

find a solution for this practical engineering problem. The present investigation will

start with VIV suppression for a single cylinder and then move on towards WIV

suppression of two interfering cylinders. All the time we should keep in mind that



a practical solution that is viable in the field should not increase the drag of the

structure. Ideally we want to reduce drag.

This chapter was not intended to be the main focus of the present work, but the

development of effective WIV suppressors came naturally as a consequence of the

results presented in previous chapters. Therefore this study is just a first attempt to

open new possibilities for suppressors. None of them have been optimised or tested

outside of laboratory conditions and, although results are rather promising, any real

application would require a new round of experiments to optimise and detail the

behaviour of the devices.

8.1 Brief review on FIV suppression

It is not difficult to imagine that the idealised solution for suppressing VIV would

be to streamline the body and avoid flow separation altogether. Consequently the

structure would not be a bluff body anymore. But this is not possible in most of the

practical applications due to structural and functional constraints. In the offshore

industry, for example, a streamlined riser would be extremely difficult and expensive

to produce, store, transport and operate.

Elastic bluff bodies will always be present in engineering design. Therefore we

are left looking for other solutions to suppress FIV of bluff bodies. Blevins (1990)

suggests three alternatives:

• Increase m∗ζ. As we have seen in Chapter 2, if the structural mass and

damping of the structure can be increased the response would be reduced.

This result could be achieved by increasing viscous friction in the system,

employing materials with high internal damping (such as rubber), or installing

external dampers. Some of these solutions may not represent a viable option

depending on the application. It is easier to achieve high values of m∗ζ in air

rather than in water. Production risers, for example, are already built using

complex polymers with high internal damping properties, but still m∗ is very

low, making m∗ζ fall in a critical range.
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• Avoid resonance. If f0 could be set distant from fs we would be able to avoid

the effect of VIV synchronisation. Blevins (1990) suggests that the reduced

velocity would have to be kept below 1.0 for this effect to be achieved. In our

results we have seen that severe WIV occurs independently of reduced velocity.

Hence this might be a solution for VIV, but probably not for WIV.

• Add a suppression device. When the structure cannot be modified according to

the suggestions above we are left with the option of installing add-on devices

to try to suppress the vibrations. A series of possible solutions for VIV of a

single cylinder has been studied by this and other works and will be described

later. But the fact that a solution works for suppressing VIV does not mean

that it will also work to suppress WIV.

Although add-on VIV suppressors can have a secondary effect of changing the

structural damping and natural frequency of the system, they are primarily designed

to disrupt or prevent the formation of an organised, two-dimensional vortex wake.

That is to say that rather than just correcting structural properties, suppressors aim

to act on the fluid-mechanics of the problem, in the origin of the fluid forces.

We know that WIV involves a distinct excitation mechanism. Therefore in the

present work we aim to make use of the insight about the WIV mechanism discussed

in previous chapters and apply it to the development of an effective suppressor.

8.1.1 VIV suppression of a single cylinder

Basically, the suppression of VIV starts with the disruption of vortex shedding

from the body. Zdravkovich (1981) wrote a very comprehensive review of various

aerodynamic and hydrodynamic means for suppressing vortex shedding from a static

cylinder. Solutions were classified into three categories according to the way they

affect the shedding mechanism: (i) Surface protrusions affect separation lines or

separated shear layers. They involve helical strakes, fins, surface bumps, among

others. (ii) Shrouds affect the entrainment layers around the body. Perforated

shrouds and axial slats are two examples. (iii) Near-wake stabilisers affect the later
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commercially. Fig. 1 adopted from Blevins (1990), features add-on devices for the
suppression of vortex-induced vibration in cylinders. The add-on devices suppress
the vortex-induced vibration by disrupting the formation of two-dimensional vor-
tex sheets.

The ribboned cylinder is another device proposed by researchers. Ribbons are
attached to the surface of the cylinder to reduce drag. Most of such proposed rib-
boned cylinders have the ribbons attached to one side of the cylinder, like the one
shown in Fig. 1.

As a result, when the direction of flow changes, the attached ribbons cannot prop-
erly perform their roles.

This study proposes a drag reduction device that uses three ribbons attached 120
degrees apart to the vertical pipe. The ribbons can be self-adjusted to the flow coming
from any direction. Experiments were conducted to investigate the effects of ribbon
length, and the direction of flows on various uniform velocities. The experiments
were conducted in a circulating water channel. Direct measurements of drag were
made by a resistance dynamometer. Flow visualizations were conducted using the
laser sheet beams. Laser Doppler Velocimetry (LDV) was used to measure the velo-
city field in the wake.

The experimental results indicate that a ribboned cylinder can be an effective
vortex suppression device when the length of its ribbons is adjusted even when the
direction of the mean current in the operating zone is not known in advance. This
type of vortex suppression device has many other advantages over typical helical

Fig. 1. Vortex suppression devices (Blevins, 1990).

Fig. 8.1: Add-on devices for VIV suppression of cylinders. Top row: splitter plate, ribbons,
guiding vane, spoiler plates. Bottom row: helical strakes, perforated shroud, axial slats,
streamlined fairing. Reproduced from Blevins (1990).

interaction between shear layers. Splitter plates, guiding vanes and base-bleed are

common examples.

A few of the suppressors mentioned above are illustrated in Fig. 8.1. Some

may be very effective in inhibiting vortex shedding from a static cylinder, or even

reducing the fluctuating forces acting on a structure that vibrates a little. But

if high-amplitude vibrations appear the displacement of the cylinder will interfere

with the vortex shedding phenomenon (as we have seen to occur during the VIV

synchronisation range) and the device might lose its effectiveness completely.

A widely used method for suppressing VIV of long slender bodies of circular

cross section is the attachment of helical strakes. Developed originally in the wind

engineering field, strakes suffer from two major problems: the first being that they

increase drag and the second that, for a given strake height, their effectiveness

reduces with decreases in m∗ζ. Whereas a strake height of 10% of cylinder diameter

is usually sufficient to suppress VIV in air at least double this amount is often

required in water, and this increase in height is accompanied by a corresponding

further increase in drag.

For a fixed cylinder it is known that if regular vortex shedding is eliminated, say

by the use of a long splitter plate, then drag is reduced. Hence in theory an effective

VIV suppression device should be able to reduce drag rather than increase it. This
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idea underlies part of the thinking in the present investigation.

A simple harmonic analysis for a linear oscillator model of VIV — developed

by Bearman (1984) and presented in Chapter 2 — shows that response is inversely

proportional to m∗ζ. Hence the most rigorous way to test the effectiveness of a VIV

suppression device is to work at low mass and damping. In the experiments to be

described in this work the parameter m∗ζ was equal to or less than 0.02. Owen

et al. (2001) described a method for low drag VIV suppression that had shown itself

to be effective down to values of m∗ζ of about 0.5. This is the attachment of large

scale bumps to induce three-dimensional separation and eliminate vortex shedding.

However, later experiments at lower values of m∗ζ have shown a return of VIV with

amplitudes similar to those of a plain cylinder.

This behaviour has been observed by the present author with even grosser forms

of continuous surface three-dimensionalities. The regular vortex shedding has been

eliminated from the body when it is fixed but it returns when the cylinder is free

to respond under conditions of low mass and damping. From this experience it is

concluded that sharp-edged separation from strakes, with its accompanying high

drag, is required to maintain three-dimensional separation and suppress VIV. Hence

at values of m∗ζ typical for risers (less than 0.1) it seems that three-dimensional

solutions are unlikely to provide the required combination of VIV suppression and

low drag.

There are a number of two-dimensional control devices to weaken vortex shedding

and reduce drag, with the most well known being the splitter plate. In this chapter

we describe the results of experiments to suppress VIV and reduce drag using various

configurations of two-dimensional control devices inspired by the splitter plate.

8.1.2 WIV suppression of pair of cylinders

Very few works investigated FIV suppression for bluff bodies with interference.

Zdravkovich (1974), which is probably the closest work related to this chapter,

only presents a wind tunnel investigation of WIV suppression employing an axial-

rod shroud. Despite his level of m∗ζ being rather high, the shrouds showed to have
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some effect in reducing WIV of the second cylinder (the format the data is presented

in his paper makes it very difficult to have any quantitative evaluation).

It is interesting to note that the most effective suppression was achieved when

both cylinders were fitted with shrouds, and not only the downstream one that

was being monitored. This is evidence that our understanding of the excitation

mechanism is correct. It is important to disrupt the coherent vortices coming from

the upstream cylinder to reduce the interaction with the downstream body. This is

exactly what the shrouds are doing.

But it was in another paper that Zdravkovich (1988) brought further insight

about VIV suppressors being used in WIV. He wrote: “A wide variety of means

for suppressing the vortex-shedding-induced oscillations [VIV] has been developed

in the past. These means might not only be ineffective for the interference-induced

oscillations [WIV] but even detrimental.” To cite an example, Korkischko et al.

(2007) showed that helical strakes typically effective in reducing VIV on an isolated

cylinder are no longer successful if the body is immersed in the wake interference

region.

We believe that only with a clear phenomenological understanding of the nature

of the excitation will it be possible to start the development of suppressors that

effectively reduce WIV. Building up understanding from previous chapters we set

out to explore new solutions that not only are successful in suppressing VIV but

also act on the vortex-structure interaction that drives WIV.

8.2 Experimental set-up

Experiments with suppressors were performed using the same facilities and models

described in Chapter 4. We first started by testing devices in 1-dof, but soon we

realised that, due to the nature of the suppression mechanism, experiments in 2-dof

would also be necessary to evaluate the dynamic stability of our suppressors. This

will become clear during the discussion of the results.

A family of suppression devices was created based on the elementary idea of a

splitter plate. Fig. 8.2 present solutions that evolved from a single splitter plate
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Fig. 8.2: Sketch of proposed control plates free to rotate about the centre of a circular cylinder:
single splitter plate (length varying from 0.25D to 2D), double splitter plates, parallel
plates (after Grimminger, 1945), parallel plates with 0.1D gap.

to a pair of parallel plates. At first devices were rigidly attached to the cylinder

in a way that they could not rotate in relation to the body. However, in practical

offshore applications the direction of the current is constantly varying; hence omni-

directional devices are required. Therefore we prepared free-to-rotate (f-t-r) devices

mounted on bearings at each end of the cylinder and able to pivot around the axis

of the body. A small gap was left between the device and the surface of the cylinder

to guarantee that no friction would interfere with the system in adjusting itself to

the approaching flow.

Table 8.1 presents the structural parameters for all the arrangements of cylinder

and suppression device tested. A more detailed description of each device presented

in Fig. 8.2 will be given later.

The only flow variable changed during the course of the experiments was the

flow velocity U , which, as for full-scale risers, alters both the reduced velocity and

the Reynolds number. For each rig, measurements were made using a fixed set of

springs and the reduced velocity range covered was from 1.5 to 23 for 1-dof and

1.5 to 13 for 2-dof experiments, where U/Df0y is defined using the cylinder natural

frequency of oscillation in the transverse direction measured in air.

Displacements x̂ and ŷ were found by measuring the root mean square value

of response in each direction and multiplying by
√

2, as explained in Chapter 5.
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Table 8.1: Structural properties for suppressors mounted in 1-dof and 2-dof. Symbols as in Fig. 8.3.

1-dof rig 2-dof rig

m∗ m∗ζ m∗ m∗ζ f0x/f0y

Model (10−2) (10−2)

• Plain cylinder 2.6 1.82 1.6 0.48 1.93

� Single splitter plate 2.7 1.89 1.7 0.51 1.89

◦ Double splitter plates 2.8 1.96 1.8 0.54 1.88

M Parallel plates 2.8 1.96 1.8 0.54 1.86

B Parallel plates with gap 2.9 2.00 1.9 0.56 1.88

Measurements for the 2-dof pendulum rig represent displacements taken for a

location at the mid-length of the model. In addition to response and force

measurements, flow visualisation was carried out using laser-illuminated fluorescent

dye and hydrogen bubbles. Instantaneous velocity and vorticity fields were obtained

with a digital PIV system.

8.3 Results: VIV suppression in 1-dof

Results for the VIV response of a single cylinder in 1-dof have already been discussed

in Chapter 5. A preliminary experiment to obtain the VIV response of a cylinder

in 2-dof was also performed and will serve as reference for all 2-dof cases. Fig. 8.3

repeats the typical VIV response of a plain cylinder compared with the response

measured for the proposed suppressors.

In the present chapter we are interested in evaluating the efficiency of devices

not only in suppressing VIV but also in reducing drag. Consequently we will also

compare Cx for different suppression configurations with mean drag measured for a

static cylinder.
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compared with a plain cylinder.
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8.3.1 Fixed splitter plate

Splitter plates could be rigidly attached to the rear of the cylinder and tests were

carried out with plates of length between LSP/D = 0.25 and 2.0. The result in

all cases was a very vigorous transverse galloping oscillation that, with increasing

reduced velocity, would apparently increase without limit. Fig. 8.3 presents the

response for a splitter plate with LSP/D = 1.0. In this first experiment the

maximum amplitude of transverse oscillation was limited to 2D and this was reached

at a reduced velocity of about 13. A similar galloping response was also observed

for a 2-dof experiment, but this result is not presented here for brevity.

Flow visualisation and PIV measurements were carried out to investigate the

interaction between the wake and the fixed splitter plate. Fig. 8.4(a) presents the

instantaneous velocity and vorticity fields for U/Df0y = 6.0. The data was acquired

when the cylinder is crossing the centreline from left to right, therefore presenting

maximum transverse velocity ẏ. The vorticity contours show that the shear layer

separated from the right-hand side of the cylinder apparently reattaches at the tip

of the fixed splitter plate. This interaction with the tip and the proximity of the

shear layer running along the splitter plate causes a region of lower pressure on the

right-hand side of the plate and cylinder.

A transverse force develops in the same direction as the cylinder motion, energy is

extracted from the free stream and galloping oscillations are sustained in essentially

the same way as for classical galloping of square section cylinders. We also note

from Fig. 8.4(a) that the shear layers are free to interact after the splitter plate

forming vortices farther downstream. The behaviour described above is illustrated

in Fig. 8.5(a) where the resultant velocity approaching the cylinder is the vectorial

addition of the free stream velocity U and the cylinder’s transverse velocity ẏ.

8.3.2 Free-to-rotate splitter plate

Since a device to be used in the ocean must have omni-directional effectiveness the

next stage was allow the splitter plate to pivot about the centre of the cylinder.

Following the disappointing results with a fixed plate, it was hoped that a
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Fig. 8.4: Instantaneous velocity vectors and vorticity contours for fixed and f-t-r splitter plates at
U/Df0y

= 6.0. (a) Fixed splitter plate under galloping oscillations. (b) Free-to-rotate
splitter plate suppressing vibrations.

(a) (b)

Fig. 8.5: Diagram showing offset position of plate and direction of steady lift force. (a) Fixed
splitter plate under galloping oscillations. (b) Free-to-rotate splitter plate suppressing
vibrations (ẏ = 0).
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Fig. 8.6: Photograph of the single splitter plate suppressing VIV at U/Df0 = 6.0.

plate free to rotate might provide sufficient hydrodynamic damping to suppress

the galloping. However, when a f-t-r splitter plate was used there were found to be

two stable positions for the plate at roughly δ = ±20◦ to the free stream direction

and the plate rapidly adopted one or other of these positions when it was released.

Fig. 8.6 illustrates this behaviour.

Cimbala & Garg (1991) also observed this bi-stable behaviour for a f-t-r cylinder

fitted with a splitter plate. In their experiments the cylinder and the splitter plate

were manufactured into one solid body allowed to rotate around the axis of the

cylinder. However, the pivoting axis of their system was rigidly mounted on a wind

tunnel section not allowing any flow-induced vibration.

Our measurements of transverse response and mean drag coefficients for the 1D

f-t-r splitter plate are plotted in Fig. 8.3. Results for a plain cylinder, fixed and

free, are shown for comparison. A f-t-r splitter plate not only suppressed VIV below

ŷ/D = 0.1 throughout the range of reduced velocity investigated, but also reduced

drag below that of a static cylinder.

PIV measurements presented in Fig. 8.4(b) show that on the side to which the

plate deflected the separating shear layer from the cylinder appeared to attach to

the tip of the plate and this had the effect of stabilising the near wake flow. Vortex

185



shedding was visible downstream but this did not feed back to cause vibrations.

An unwanted effect was that a steady transverse lift force developed on the

cylinder. The splitter plate was free to rotate so the force, caused by differing

flow on the two sides of the combination of cylinder and splitter plate, must be

acting primarily on the cylinder rather than the plate. As shown in Fig. 8.5(b),

the direction of the force was opposite to that which occurs on an aerofoil with a

deflected flap, and caused the cylinder to adopt a steady offset position to the side

to which the splitter plate deflected. It was this force which was responsible for

the strong galloping response with the fixed splitter plate explained earlier. As a

cylinder with a fixed splitter plate aligned with the free stream plunges with ẏ as in

Fig. 8.5(a), say, the instantaneous flow direction is approximately the same as that

shown in Fig. 8.5(b).

Results presented so far have been for a f-t-r plate having a length equal to the

cylinder diameter. Further tests were carried out with a series of f-t-r splitter plates

with various LSP in order to assess the effect of plate length on VIV suppression

effectiveness. The results showed that f-t-r splitter plates with lengths between

LSP/D = 0.5 and 1.5 are all effective in suppressing VIV. Also they all had drag

coefficients below the value for a plain fixed circular cylinder. When f-t-r plates

outside this range were attached to the cylinder a transverse flow-induced vibration

returned. Cimbala & Garg (1991) found stable positions outside this range but this

may have been because their system was not allowed to respond to flow-induced

excitation. A secondary effect might have been the level of friction in their ball

bearings (as will be discussed later in this chapter).

The plates that successfully suppressed VIV adopted slightly different offset

angles (δ, defined in Fig. 8.2), depending on plate length. These steady angles

are shown plotted in Fig. 8.7 along with results from Cimbala & Garg (1991). It

can be seen that the longer the splitter plate the smaller the angle. The dashed line

in the figure, given by

δ = arcsin
D/2

LSP +D/2
, (8.1)

is the angle the plate would adopt if it is assumed that the tip of the plate just

intercepts a line leaving the shoulder of the cylinder and trailing back in the flow
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Fig. 8.8: Effect of splitter plate length on mean drag coefficient. Cx is averaged for
Re = 2× 103 − 1.8× 104.

direction. The data generally supports the observation that the shear layer from the

side of the cylinder to which the splitter plate deflects just reattaches at its tip.

As Fig. 8.8 shows, the length of the plate also has some effect on the mean drag

coefficient. Each data point represents an average Cx for the whole Re range of

the experiments. This result suggests that a successful VIV suppression and drag

reduction device using a f-t-r splitter plate can be shorter than one cylinder diameter,

but must fall within a defined length range for it to be effective.

187



8.3.3 Double splitter plates

In order to try to eliminate the steady transverse force found for a f-t-r splitter plate,

a pair of plates was introduced. The plates were 1D long and set at ±20◦ to the free

stream direction. The angle between the plates was fixed but the pair of plates was

free to pivot about the centre of the cylinder. The configuration is shown as double

splitter plates in Fig. 8.2.

As shown by the results plotted in Fig. 8.3, this configuration suppressed VIV

and reduced drag below that of a plain cylinder. It also eliminated the steady side

force found with the single plate. With this arrangement the shear layers from the

cylinder stabilised and reattached to the tips of the plates. Downstream of the plates

vortex shedding was observed but this did not generate an excitation sufficient to

cause any serious VIV. Maximum amplitudes recorded were only around 5% of the

cylinder diameter.

8.3.4 Parallel plates

Further variations on the concept of double plates, some inspired by the early work

of Grimminger (1945) related to suppressing VIV of submarine periscopes, were also

studied. Starting at the ±90◦ points, the plates trail back 1D from the back of the

cylinder and are initially aligned to the flow. Both plates were mounted on ball

bearings at the extremity of the cylinder and were always parallel to each other,

freely rotating as one body around the centre of the cylinder. In one case there was

a negligible gap between the plates and the cylinder (parallel plates in Fig. 8.2) and

in a second case the gap was set at 10% of the cylinder diameter (parallel plates with

gap).

In Grimminger’s experiments the plates were fixed since the flow direction was

known but in our work the plates were free to rotate. It was found that the plates

with the very small gap give the better performance. As shown in the plots in

Fig. 8.3 of amplitude and drag coefficient against reduced velocity, this configuration

of plates provided excellent VIV suppression and the greatest reduction in drag below

the plain cylinder value.
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8.4 Results: VIV suppression in 2-dof

It has been shown here that various arrangements of two-dimensional control plates

are effective in suppressing transverse VIV. However, is this achieved at the expense

of larger in-line VIV amplitudes? To answer this question a set of experiments was

conducted in the 2-dof rig. Experiments were repeated with various arrangements of

plates and the measured x̂, ŷ and Cx are plotted against reduced velocity in Fig. 8.9.

Results for the plain cylinder are also shown and will serve as reference for all

other 2-dof curves. Examples of the trajectories of motion are plotted in Fig. 8.11

and will be discussed later. The overall response was found to be in good agreement

with results from Jauvtis & Williamson (2004) and Dahl et al. (2006).

After confirming that all the devices would successfully suppress VIV in 1-dof

oscillations, we mounted the same models in the 2-dof rig. This produced further

unexpected findings. Starting with the single splitter plate, we found out that the

plate was not able to stabilise in the expected ±20◦ position, but oscillated severely

from one side to the other and the cylinder developed high amplitudes, both in-

line and transverse. We observed that the splitter plate oscillated so much that it

almost reached the ±90◦ positions. This behaviour was also observed for all the

other devices.

Figs. 8.9(a) and (c) present the transverse and in-line amplitudes versus reduced

velocity and show that all devices led to considerable vibrations of the cylinder, in

many cases greater than that for the plain cylinder. As one might expect, almost all

drag coefficients presented in Fig. 8.9(e) were increased above the ones for a plain

cylinder.

8.4.1 Effects of torsional resistance and rotational inertia

Apart from moving from 1-dof to 2-dof, the only other change in the apparatus was

to replace the old bearings in the mounts for the suppression devices by new ones

with lower friction. This prompted us to consider additional parameters that might

be important in stabilising the devices.

Two additional parameters that may influence the effectiveness of the suppression
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Fig. 8.9: Cross-flow displacement (top), streamwise displacement (middle) and drag coefficient
(bottom) versus reduced velocity for devices with 2-dof. Torsional friction below critical
value in (a), (c) and (e). Torsional friction above critical value in (b), (d) and (f). For
key please refer to Fig. 8.3.
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Fig. 8.10: VIV suppression map for a f-t-r splitter plate showing dependence on torsional friction.
The solid line represents the contour where Axy/D = 0.1. (a) Torsional friction versus
reduced velocity. (b) Non-dimensionalised torsional friction parameter versus reduced
velocity.

devices are: the rotational inertia of the plates and the torsional resistance resulting

from friction in the bearings holding the plates. Experiments with mass added

to the splitter plate to increase its rotational inertia produced no obvious change

in behaviour. However, we noted that small increases in torsional friction were

sufficient to suppress vibration. This finding prompted a study of the effect of

torsional friction which we now knew would lead to severe oscillations if it was

below some critical value and presumably would result in galloping oscillations if it

was too large.

A simple modification was made to the apparatus in order to control the torsional

resistance, which was varied in small increments between τf = 0.9× 10−2 and

5.5× 10−2 Nm per unit length of the cylinder, with the lowest value being for just the

natural friction of the bearings. With a value higher than τf = 5.5× 10−2Nm/m the

splitter plate did not move over the range of reduced velocity tested and galloping

returned.

A set of 56 runs varying the reduced velocity was completed for the single splitter

plate model of length 1D in order to map the amplitude response for different values

of τf . The displacement amplitude parameter

Axy =
√
x̂2 + ŷ2 (8.2)

was determined for each run and maps of the cases studied are shown in Fig. 8.10(a).
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Fig. 8.11: A few cycles of 2-dof trajectories versus reduced velocity: (a) plain cylinder, (b) f-
t-r splitter plate with τf = 0.9× 10−2 below critical and (c) f-t-r splitter plate with
τf = 3.5× 10−2 above critical. ŷ/D and x̂/D are plotted to the same scale.

The solid line gives an indication of the effectiveness of suppression. For all points

above that contour Axy/D is less than 0.1.

A non-dimensional friction torque parameter, defined by

τ ∗f =
τf

ρU2D2
, (8.3)

represents the ratio of structural torsional resistance to a hydrodynamic torque. Use

of this parameter provides a means of determining the required torsional resistance

for full-scale risers. Fig. 8.10(b) presents the same stability map as shown in

Fig. 8.10(a) but instead plots the non-dimensional friction torque parameter τ ∗f

on the vertical axis. The dashed line is for τf = 2.5× 10−2Nm/m, illustrating that

any value of torsional friction between this line and the upper threshold would be

sufficient to suppress VIV with a single splitter plate.

Fig. 8.11 shows examples of trajectories of motion for a single splitter plate

with two different torsional friction levels, below and above the critical value,

compared with the response of a plain cylinder. In the low-friction case of

τf = 0.9× 10−2Nm/m (b) the splitter plate was unstable and the trajectories show

amplitudes higher than those for a plain cylinder (a). However, when the friction

level was set to τf = 3.5× 10−2Nm/m (c) the trajectories are little more than small

dots over the whole range of reduced velocity.
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Table 8.2: Drag reduction for 2-dof VIV suppressors. Symbols as in Fig. 8.3. Cx averaged in the
range Re = 2× 103 − 1.8× 104.

Model Cx Drag reduction

� Static cylinder 1.03 Reference

� Single splitter plate 0.88 14%

◦ Double splitter plates 0.70 32%

M Parallel plates 0.63 38%

B Parallel plates with gap 0.69 33%

We next wanted to verify that the other suppressors would also work if the

torsional friction was set to a suitable critical value. Because the critical value was

unknown for each device, we arbitrarily chose the value τf = 3.5× 10−2Nm/m from

the single splitter plate map of Fig. 8.10(a), which is in a region where suppression

is effective. All devices were set at this torsional friction level and runs over a range

of reduced velocity were performed. Figs. 8.9(b) and (d) show results that should

be compared with the low-friction case in the first column. Immediately we notice

that the amplitude levels in both directions of motion are very much less than those

for the low-friction case. In fact, at this torsional friction level all suppressors were

effective in reducing VIV below 5% of cylinder diameter.

Fig. 8.9(f) shows that all devices reduced drag below that of a fixed cylinder for

most of the range of reduced velocity. The drag coefficients in Table 8.2 are averaged

over the Re range of the experiments and show that parallel plates achieved the

highest average drag reduction of 38% when compared with a plain fixed cylinder.

Hence for each test case the Reynolds number range is the same and for the freely

mounted models the reduced velocity ranges are also the same.

It seems likely that different suppressors might have different stability boundaries

for torsional resistance, but there is clearly a range of τf within which VIV

suppression would be achieved for the devices we studied. A further observation

is that the critical torsional friction required to stabilise the splitter plate in 2-dof

motion is greater than that required for1-dof, presumably because in-line vibrations

play some role in rotating the device.
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Fig. 8.12: f-t-r short-tailed fairing fitted to a cylinder. Geometry after Pontaza & Chen (2006).
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ŷ
/
D

 

 
Plain cylinder

Fixed single splitter plate

Fixed fairing

F-t-r fairing

Fig. 8.13: Response of a fixed and f-t-r fairing.

8.4.2 VIV suppression with a short-tailed fairing

One last suppression device tested was the triangular fairing with a flat tail piece

presented in Fig. 8.12. This geometry is already employed by the offshore industry

following its appearance as a commercial device to reduce VIV (Allen & Henning,

1995). The geometry adopted in this work was based on the proportions found in

Pontaza & Chen (2006).

Response in 1-dof

The response of the fairing was first studied in 1-dof motion. In Fig. 8.13 we observe

that a cylinder fitted with a fixed fairing responds in a similar way to the fixed splitter

plate described earlier, however this time the amplitude reaches values just above

ŷ/D = 2.0 before rapidly falling to lower levels at about a reduced velocity of 14.
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Although fairings are being used to suppress VIV in practical offshore applications,

our results show that a fixed fairing can cause severe galloping over a considerable

range of reduced velocity.

Once the fairing was allowed to rotate about the centre of the cylinder the

response was completely different. The fairing tilted to an inclined position in just

the same way as the single splitter plate did and the low displacement amplitude

levels shown in Fig. 8.13 prove that it successfully suppressed vibrations in 1-dof.

Although for certain reduced velocities the drag coefficient appeared to be below

that of a fixed cylinder, the mean drag calculated for the whole range showed a

slight drag increase of 2%.

Response in 2-dof

The fairing was tested in the 2-dof rig also varying the torsional resistance parameter

and was the only suppressor to present a dissimilar behaviour from the others. We

indeed noticed that a f-t-r fairing with sufficient torsional resistance would also

tilt and find a stable inclined position, just like the single splitter plate. In the

low-friction case the fairing did not find a stable position, but caused vibrations

comparable to a plain cylinder. However, we noticed that when the torsional friction

was increased to τf = 3.5× 10−2Nm/m, and the fairing had eventually stabilised in

an inclined position, vibration was reduced. Even so, with 2-dof the fairing was not

as effective in suppressing VIV as the other longer suppressors.

It appears that for both 1-dof and 2-dof experiments the fairing behaved in a

similar manner to a single splitter plate of length 0.5D. By examining Figs. 8.2

and 8.12 it is clear that the characteristic length of the fairing is half that of other

suppressors. Consequently vibrations might be caused because the fairing is not

long enough to delay the vortex shedding sufficiently downstream of the body and

vortices are somehow feeding back and exciting the cylinder.

After this study we can say that we have a better understanding of the principle

behind the way fairings work to reduce VIV. Such a short fairing like this is not

able to avoid flow separation, therefore it is not working as a streamlining “fairing”

at all. Just like the single splitter plate, the fairing also generates a mean lift force

195



towards the side to which it is deflected. In practice, long risers are fitted with a

series of fairings mounted along the span of the pipe. We believe that some fairings

might randomly deflect to one side whereas others find a stable position at the

opposite side, in a way that the resultant lift force generated on the entire riser

is neutralised. This prediction was not verified in our experiments but we believe

on-site observations would help to clarify this point.

8.5 WIV suppression in 1-dof

We are able to investigate the effectiveness of the same devices described above

simply by placing a static cylinder upstream. WIV experiments were conducted only

in 1-dof, therefore f0 ≡ f0y . Knowing that the WIV response naturally decreases

with increasing x0, we tested devices at x0/D = 4.0 where we have found, in previous

chapters, the most vigorous WIV response. There is no reason to believe that a

suppressor would lose efficiency if x0 is increased beyond 4.0.

But before moving on to investigate the effectiveness of two-dimensional control

plates, we wanted to verify the WIV behaviour of the most widespread of the VIV

suppressors: helical strakes.

8.5.1 WIV with helical strakes

We performed WIV experiments with the downstream cylinder fitted with helical

strakes. The model had a diameter of 68mm, a strake height of 0.1D and a helical

pitch of 5D. We are aware that this geometry does not match the propositions

currently employed by the offshore industry, but still it provides some insight on the

ineffectiveness of strakes in reducing vibrations when there is flow interference from

upstream. Separation was kept at x0/D = 4.0 and only the downstream cylinder

was fitted with strakes. The upstream cylinder was left plain in order to generate a

coherent vortex wake in the gap and excite WIV.

Fig. 8.14 presents the results compared to the reference VIV and WIV curves

for plain cylinders. First, we note that this configuration of strakes is able to reduce

the VIV amplitude by 44% at the resonance peak. The level of vibration remains
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fairly low around ŷ/D = 0.1 up to reduced velocity 10, after which vibration builds

up again reaching amplitudes around 0.4 at U/Df0 = 23. This increasing response

appears to be an effect of random fluctuations in lift and drag generated by the

disruption of the flow by the strakes. The energy content of force fluctuation

increases with flow speed, and so does the random response.

Once a plain cylinder is placed 4D upstream the response changes significantly.

The amplitude returns to ŷ/D = 0.8 at the VIV resonance peak, then falls slightly

as reduced velocity is increased, but remains at a considerably high level around

0.5 for the rest of the reduced velocity range. As we can see the response does

not reach the high values of WIV found for plain cylinders, but still the significant

level of response is enough to conclude that the strake has lost efficiency when flow

interference is present.

In Fig. 8.14 we can also see the level of drag generated by the device. On average,

the cylinder with strakes showed a 26% drag increase when compared to a static

single cylinder. In a similar way, the downstream cylinder with strakes presented

even higher drag relative to a static cylinder in tandem.

Knowing how the WIV mechanism works, we are able to conclude that the

unsteady wake from upstream is still able to interact with the downstream body and

enhance the response. An ideal WIV suppressor has to work not only in disrupting

the vortex formation from its own cylinder, but also avoiding the vortex-structure

interference in the gap. If WIV suppression with drag reduction is to be achieved

the helical strake is not the solution to be followed.

8.5.2 Free-to-rotate parallel plates

In the previous section we have shown that two-dimensional control plates are very

successful in suppressing VIV of a single cylinder. Therefore we selected the most

efficient solution tested above — the parallel plates that produced less drag — to

verify its effectiveness in suppressing WIV.

The downstream cylinder, which was mounted on the 1-dof elastic rig, could be

fitted with free-to-rotate plates. The upstream cylinder was kept fixed and could
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Fig. 8.15: Configurations of cylinders fitted with parallel plates. x0/D = 4.0.

be fitted with an identical pair of fixed parallel plates. This way, three different

configurations were tested fitting the devices on one or both cylinders at a time, as

shown in Fig. 8.15.

WIV response

We started our investigation by fitting an elastically mounted cylinder with parallel

plates but placing a static plain cylinder downstream — almost like configuration

I in Fig. 8.15, but with the upstream cylinder being the one free to oscillate. We

observed that the presence of the downstream cylinder did not interfere with the

response of the upstream cylinder, but the suppressor was still effective and the body

did not perform significant vibrations. This was important to validate our hypothesis

that an upstream cylinder fitted with f-t-r parallel plates would behave as a static

cylinder due to the effectiveness of the suppressor, at least for x0/D > 4.0. This

being true, we could replace the upstream cylinder by a fixed cylinder fitted with

fixed parallel plates and concentrate our attention at the response of the downstream

cylinder.

Results are presented in Fig. 8.16. The first set shows the response for a

plain downstream cylinder when the upstream cylinder is fitted with fixed plates

(configuration I in Fig. 8.15). We know that WIV is related to the unsteady vortices

from the upstream cylinder and we believe the amplitude of vibration is directly
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related to the intensity of vortices formed in the wake in the gap. We also know

that the parallel plates work by delaying the interaction between the two shear

layers, thus delaying the formation of vortices and weakening the wake in the gap.

(The fact that the drag on a single cylinder fitted with parallel plates is less than

the drag on a plain fixed cylinder proves that the wake being generated is weaker.)

Therefore, since the plates do not annihilate the formation of vortices from the first

cylinder, but weaken them, the amplitude of vibration of the downstream cylinder

is expected to be less than that observed for a pair of plain cylinders under WIV.

This is exactly what we see in Fig. 8.16. If the upstream cylinder is the only one

fitted with parallel plates (configuration I) the downstream cylinder would still suffer

WIV, though with a reduced amplitude level.

Now, in configuration II (Fig. 8.15) the cylinder fitted with f-t-r plates is

positioned downstream of a plain static cylinder and Fig. 8.16 presents a remarkable

result. The WIV of the downstream cylinder was suppressed to levels around 10% of

a diameter, the same level of residual vibration measured for a single cylinder under

VIV for reduced velocities after the synchronisation region. This level of vibration

is already considered to be rather low and we could say that the parallel plates

have successfully suppressed vibration to a desirable point. Based on the results

presented in previous chapter, we know that the upstream cylinder in configuration

II is shedding vortices as an isolated cylinder. In principle, the wake coming from

the upstream cylinder has the same characteristics as the wake found between two

plain cylinders in tandem arrangement. Therefore the parallel plates must be acting

not only on the vortex shedding mechanism of the downstream cylinder, but also

on the vortex-structure interaction this body encounters with the approaching flow.

As a result, the vigorous type of WIV is suppressed.

As we have demonstrated in Chapter 7, the mass and damping parameters of

the system play an important role and may reduce WIV for certain critical values

(Bokaian & Geoola, 1984; Zdravkovich & Medeiros, 1991). We might suggest

that the presence of two long plates along the cylinder axis may increase the

hydrodynamic added mass and damping in the direction of movement. This change

could be responsible for reducing the response but probably not for suppressing the
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vibration completely. Therefore we believe the plates are acting directly on the WIV

excitation mechanism as we understand it.

Finally, in configuration III we note the response of the downstream cylinder

being suppressed to even lower levels. In configuration II we saw that the plates

on the second body did a good job to counteract the WIV excitation coming from

upstream. Now that the unsteadiness of the wake is also reduced by the presence

of parallel plates installed upstream, the response of the second body is further

reduced.

From this series of experiments we conclude that it is essential to install parallel

plates on the downstream cylinder to suppress WIV; if plates are installed on the

upstream cylinder the result is further improved.

The results presented in the present work refer only to a separation of

x0/D = 4.0. We already know that the excitation mechanism may change as x0

is reduced below a critical separation. We also know that the plates require a

minimum length to work. If we reduce the gap or enlarge the plates we may fall

again in the gap-flow-switching range and a vigorous response may return.

Drag reduction

Considering a pair of fixed cylinders in tandem arrangement, it is known that the

mean flow profile that reaches the second cylinder has a deficit in velocity compared

to the free stream flow. Hence, the second cylinder of a tandem pair experiences

less drag when compared to the first cylinder, which is exposed to the incident free

stream U (Fig. 6.1, page 106). However, as the body oscillates in and out of the

wake interference region, this shielding effect is reduced and Cx is increased.

Fig. 8.16 also presents two reference curves for drag on static cylinders: one

measured for a single cylinder and the other for the downstream cylinder of a tandem

pair. We clearly see that the level of Cx in tandem is already half of that found for

a single static cylinder. Therefore, a correct evaluation of drag reduction for WIV

suppressors must take Cx = 0.49 as a reference and not Cx around unity.

Both configurations that successfully suppressed WIV (II and III) also reduced

drag when compared to a fixed cylinder in tandem arrangement. Table 8.3
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Table 8.3: Drag reduction for WIV in 1-dof. Symbols as in Fig. 8.16. Cx averaged in the range
Re = 2× 103 − 1.8× 104.

Model Cx Drag reduction

� Static tandem 0.49 Reference

O Parallel plates: Config. II 0.33 33%

M Parallel plates: Config. III 0.38 22%

summarises the data plotted in Fig. 8.16. It is interesting to note that while the

upstream wake with weaker vortices found in configuration III helps to reduce the

amplitude of response, it does not have as large an effect in reducing drag. It seems

that the upstream cylinder fitted with parallel plates experiences a drag reduction

as well, generating a wake that reaches the second cylinder with a weaker velocity

deficit. This reduction in the velocity deficit must be incurring a drag penalty on

the downstream body. While configuration II produced 33% of drag reduction,

configuration III was limited to 22%.

8.5.3 Single splitter plate as a WIV suppressor

Now that we know that parallel plates are effective in suppressing VIV and WIV,

we might have a brief look into the WIV response of a cylinder fitted with a single

splitter plate. As we know, a f-t-r splitter plate requires a stable deflected position

in order to suppress VIV. This is achieved at the cost of a steady lift force being

generated towards the side the plate has deflected. We saw that if the plate is not

able to stabilise, say by having very low torsional resistance, it will wobble from one

side to the other as the cylinder oscillates.

Now, we saw that the wake coming from the upstream cylinder is full of coherent

vortices that are responsible for the WIV excitation. This may lead to the question:

With unsteady pressure fluctuations coming from the upstream wake, is it possible

for a f-t-r splitter plate fitted on the downstream cylinder to find a stable position? In

order to investigate this possibility, we performed one last experiment replacing the

parallel plates in configuration II by a f-t-r splitter plate. The results are presented
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Fig. 8.17: WIV suppression with f-t-r splitter plate and parallel plates.

in Fig. 8.17.

The plate was installed with a torsional friction above the critical value found

for VIV. Even though, it was not able to stabilise around δ = ±20◦ or any other

angle, but oscillated vigorously as the cylinder responded with amplitude between

0.6 and 1.0 for the range of reduced velocities. It appeared that the vortex-structure

interaction present in the wake was indeed acting on the plate to prevent it from

finding a stable angle.

The WIV excitation mechanism becomes even more complex when the splitter

plate is pivoting around the cylinder. We already know that, during WIV, the lift

force acting on the downstream cylinder has a steady component acting towards

the centreline. Imagine a cylinder with a f-t-r splitter plate slightly offset from the

centreline of the wake; the lower pressure on the internal face of the cylinder will

also act on the plate, deflecting it inwards. We already know that a splitter plate

generates a mean lift towards the side it is deflected; hence also pointing towards

the centreline. We have the combination of two forces, one originating from the

wake stiffness and other generated by the deflected plate, acting in the same inward
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(a) (b)

Fig. 8.18: Instantaneous vorticity contours (a) and velocity vectors (b) for a f-t-r splitter plate
under WIV at U/Df0 = 6.0.

Fig. 8.19: Sketch of competing lift forces generated by wake interaction with a f-t-r splitter plate
under WIV.

direction.

Now consider the cylinder represented in Fig. 8.18 (a sketch is presented in

Fig. 8.19). At this instant the cylinder is returning from its outmost displacement,

still with low cross-flow velocity. The splitter plate shows a small outward deflection

angle that will change while the body plunges across the wake. Again we see the

competition of lift induced by the wake and generated by the plate, as expressed by

the arrows in Fig. 8.19. It is this complex interaction that prevents the plate from

stabilising and sustaining the oscillations.
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Only a device that does not require an asymmetric stable deflection will be

effective in suppressing WIV. The parallel plates are successful because they do not

depend in a deflected position to interact with the shear layers nor generate the

consequent steady lift. This instability observed for a f-t-r splitter plate must occur

for any non-symmetric device, including the short-tailed fairing considered above.

In spite of being used by the offshore industry as a VIV suppressor, the fairing may

well not work if the riser encounters interference from the wake generated from other

bodies. As we see, the result is even worse than the typical VIV vibration, persisting

with high levels of response for the rest of the reduced velocity range.

8.6 Conclusion

8.6.1 VIV suppression

Suppression of cross-flow and in-line VIV of a circular cylinder, with resulting drag

coefficients less than that for a static plain cylinder, has been achieved using two-

dimensional control plates free to rotate around the body.

• Response below ŷ/D = 0.1 was achieved at a value of the m∗ζ < 2× 10−2 for

1-dof and m∗ζ < 0.56× 10−2 for 2-dof motion.

• Considerable drag reduction was achieved by all suppressors, yet the best

solution was the parallel plates which produced a 38% reduction in drag when

compared to a static cylinder.

• A f-t-r splitter plate was also found to suppress VIV but this configuration

develops a mean transverse force. This force can be eliminated by using a

pair of splitter plates arranged so that the shear layers that spring from the

cylinder attach to the tips of the plates.

• Short fairings with a characteristic length of 0.5D proved to reduce amplitude

levels (at the expense of a mean transverse force) but were not as efficient as

other longer suppressors. Rather than reducing drag for the entire range of

reduced velocities tested, the fairing increased it for certain velocities.
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8.6.2 WIV suppression

Cross-flow WIV suppression with drag reduction was also achieved when f-t-r parallel

plates were installed on the downstream cylinder of a pair.

• Response below ŷ/D = 0.1 was achieved at a value of the m∗ζ < 2× 10−2 for

1-dof motion.

• If both cylinders are fitted with suppressors, which must be the case for an

offshore installation, the reduction in drag can amount to 22% compared to a

static downstream cylinder in tandem arrangement. If only the downstream

cylinder is fitted with parallel plates the drag reduction is around 33%.

• A f-t-r- splitter plate was found not to suppress WIV due to intense vortex-

structure interference with the upstream wake. We suggest only devices

that do not require a non-symmetric stable position will be efficient in WIV.

Therefore, short fairings that behave as splitter plates are unlikely to provide

WIV suppression.

• It was demonstrated that helical strakes, at least the one configuration tested,

lose their suppression efficiency when unsteady excitation is present in the

upstream wake.

8.6.3 Concluding remarks

The level of torsional friction plays a fundamentally important role, needing to

be high enough to hold the devices in a stable position, while still allowing them

to realign if the flow direction changes. Devices with torsional friction below a

critical value oscillate themselves as the cylinder vibrates, sometimes increasing the

amplitude of cylinder oscillation higher than that for a plain cylinder. All devices

with torsional friction above the critical value appeared to suppress VIV and reduce

drag for 1-dof and 2-dof motions. However, if the torsional resistance is above

a limiting threshold the suppressors may not rotate and an undesired galloping

response can be initiated.
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The present study proves that suppressors based on parallel plates have great

potential to suppress VIV and WIV of offshore structures with considerable drag

reduction. Future work should concentrate on optimising the devices in respect of

overall length and geometry. Also, a more detailed parametric investigation on the

effects of rotational inertia and torsional resistance should be carried out for each

specific solution.
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Chapter 9

Conclusion

Most of the points presented in this chapter have been dealt with in more detail

in the conclusion sections at the end of the respective chapters. Nevertheless, it

summarises the main findings and contributions of the present study.

9.1 WIV excitation mechanism

As we have discussed in Chapter 3, so far the wake-displacement mechanism

proposed by Zdravkovich (1977) seemed to be the most plausible explanation for

the WIV phenomenon, even though he could not conclude how the wake was

being ‘displaced’ to generate the necessary phase lag to sustain the vibrations. In

Chapter 6 we have concluded that WIV is indeed a wake-dependent type of FIV.

Yet we found that it is the unsteadiness of the wake that plays a role in the WIV

process and not simply the displacement of a steady flow field. We could say that

Zdravkovich’s ‘wake-displacement’ theory needs to be understood more as a ‘vortex-

displacement’ mechanism.

We argue that the WIV mechanism is sustained by unsteady vortex-structure

interactions that input energy into the system as the downstream cylinder oscillates

across the wake.

• We conclude that WIV is not a resonant phenomenon. While VIV finds its

maximum amplitude of vibration at fs = f0, WIV keeps increasing ŷ even



when fs is much higher than f0. In the shear flow experiment we removed the

upstream shedding frequency of the system, leaving only fs that is generated

by the second cylinder. As a result, the oscillations returned to a typical VIV

response meaning that the upstream frequency — or the upstream vortex

shedding — was somehow important to sustain the excitation. Nonetheless,

for the sake of classification, WIV is essentially a type of vortex-induced

mechanism in the sense that it requires the interaction of the structure with

vortices, even though these vortices are coming from an upstream wake.

• Energy input from the fluid to the structure will only occur when there is a

phase lag greater than φ = 0◦ or less than 180◦ between the fluid force and

displacement. Coherent vortices impinging on the second cylinder and merging

with its own vortices induce fluctuations in lift that are not synchronised with

the motion. Strong vortices from the upstream wake induce considerable

changes in the lift force; a favourable phase lag is most likely to occur in

a disturbed wake that is constantly changing and interacting with the body.

Remove the unsteady vortices from the wake and WIV will not be excited.

• The characteristic response of the second cylinder agrees with the theory

presented above. Irregular envelopes of displacement and lift indicate that the

second cylinder encounters different wake configurations for each cycle. This is

not possible in a steady flow, but is observed when an irregular vortex-structure

interaction is present. As the second cylinder is moved farther downstream,

vortices coming from the upstream wake have more time to diffuse and the

induced vortex-structure interaction is weakened. Flow three-dimensionality

may also increase with x0 and contribute to reduce the response.

Now, one may think that if the origin of the WIV mechanism is so strongly

dependent on the unsteadiness of the vortex wake coming from the upstream body —

or on the phase lag that those vortices generate — it is possible to think about some

configuration of the upstream wake that will suppress WIV instead of enhancing it.

By this we mean: is there a possibility that the phase lag originated in the upstream
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wake has a destructive effect suppressing the excitation of the downstream cylinder

altogether?

This fact was not observed in the present work; rather the second cylinder always

has presented some oscillatory motion. But this hypothesis finds support from other

observations reported in the literature. Previously (Assi, 2005), we have performed

experiments with a pair of rigid cylinders when both cylinders were free to respond in

the cross-flow direction. At that time, this configuration brought too many variables

into the system and did not help our understanding of the phenomenon.

We observed that when both cylinders were free to vibrate for separations larger

than the critical, the upstream cylinder would behave as an isolated cylinder under

VIV and the downstream cylinder would respond with WIV most of the time.

However, sometimes the downstream cylinder would stop vibrating but remain static

behind the first cylinder, even though the upstream cylinder was responding with

VIV. Sometime this suppression of WIV would last for a few seconds, but at others

the downstream cylinder would remain static for several cycles of oscillation of the

upstream body.

This observation fits remarkably well with our current understanding. It shows

that it is possible for an oscillating upstream cylinder to generate a developed wake

that actually suppresses the WIV of the downstream body. All that is necessary

is the correct combination of phase lag in the wake that is interacting with the

second cylinder. Of course the probability of WIV being suppressed was observed

to be much smaller than WIV being excited, but it was shown to be possible. On the

other hand, this kind of WIV suppression was never observed (including this present

work) if the upstream cylinder is held static. This suppressing wake mode must be

generated only by the vortex shedding from an oscillating upstream cylinder.

Huera-Huarte & Bearman (2009) performed experiments with two long and

flexible cylinders in tandem. They also observed that for some configurations

the upstream cylinder responding in VIV suppressed the WIV response of the

downstream one. Although they did not explain how such an interaction was

possible, their observations are in remarkable agreement with our theory proposed

in the present work.
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9.2 Characteristics of the WIV response

In Chapter 7 we have made f0 = 0 to shown that a body without any structural

stiffness can be excited into oscillatory motion if enough stiffness is provided by

the flow. We have introduced the concept of wake stiffness, a fluid dynamic effect

that can be associated, to a first approximation, with a linear spring with stiffness

proportional to |∂Cy| and Re.

The concept of wake stiffness is a powerful one but it is also requires the existence

of an unsteady vortex wake present in the gap. The importance of the unsteady

wake is central. Therefore we conclude that WIV is not to be understood as a type

of classical galloping, but must be interpreted as wake-excited and wake-sustained

FIV mechanism.

• The experiment without springs was crucial in the understanding of the

phenomenon and proved that a cylinder mounted without springs is able to

develop oscillatory motion. A simple analytical model suggested that the

amplitude of response should increase with Reynolds number; this was also

verified by experimental data. However, such a simple model that does not

account for nonlinear effects in the fluid force is not able to predict the correct

level of amplitude.

• We proved that the steady lift towards the centreline not only provides

some restoration for a quasi-static system but is, in fact, responsible for the

characteristic WIV response of a cylinder that is free to vibrate. The wake

stiffness concept does not explain the excitation mechanism but it predicts

rather well the characteristic signature of the WIV response both in terms of

displacement and frequency. We can say that while unsteady vortex-structure

interactions provide the energy input to sustain the vibrations, it is the wake

stiffness phenomenon that defines the character of the WIV response.

• A simple linear model was able to predict the frequency of response rather well.

It was confirmed that the cylinder without springs does not respond following

the vortex shedding frequency fs. Instead the response matches the frequency
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branch fw associated with wake stiffness, which was well predicted by the

model. A cylinder with springs responds with a frequency that combines some

effect from fw and f0, yet different from both.

• We observed a gradual transition from an initial VIV regime to a dominant

WIV regime as flow speed was increased. The boundaries between them

were found to be related to the resonances fs = f0 and fw = f0. During the

transition we find an intermediate condition in which VIV is losing strength

and WIV is taking control. Beyond fw = f0 the wake stiffness effect is

dominant over the spring stiffness and reduced velocity becomes irrelevant;

k is very relevant in the first regime, but kw becomes dominant in the second.

• As expected, the x0 separation between both cylinders was confirmed to have a

significant effect on the response. We suggest this effect is related to an increase

in vortex diffusion and flow three-dimensionality as the gap is enlarged. The

first VIV regime suffered no influence of x0 and the local resonance peak kept

the same level of displacement for all separations. On the other hand, the

second WIV regime showed a strong influence of x0, with the characteristic

WIV branch of response gradually disappearing with increasing separation

9.3 Suppression of VIV and WIV with drag

reduction

Based on the correct understanding of the WIV mechanism, we conclude that

suppressors based on parallel plates have great potential to suppress VIV and WIV

of offshore structures with considerable drag reduction.

• Suppression of cross-flow and in-line VIV of a circular cylinder, with resulting

drag coefficients less than that for a static plain cylinder, has been achieved

using two-dimensional control plates free to rotate around the body. The best

solution was the parallel plates which produced a 38% reduction in drag when
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compared to a static cylinder. A f-t-r splitter plate was also found to suppress

VIV but this configuration develops a mean transverse force.

• Cross-flow WIV suppression with drag reduction was also achieved when f-

t-r parallel plates were installed on the downstream cylinder of a pair. If

both cylinders are fitted with suppressors, which must be the case for an

offshore installation, the reduction in drag can amount 22% compared to a

static downstream cylinder in tandem arrangement. It was demonstrated that

helical strakes, at least the one configuration tested, lose their suppression

efficiency when unsteady excitation is present in the upstream wake.

• A f-t-r splitter plate was found not to suppress WIV due to intense vortex-

structure interference with the upstream wake. We suggest only devices

that do not require a non-symmetric stable position will be efficient in WIV.

Therefore, short fairings that behave as splitter plates are unlikely to provide

WIV suppression.

• The level of torsional friction (τf ) plays a fundamentally important role,

needing to be high enough to hold the devices in a stable position, while

still allowing them to realign if the flow direction changes. Devices with τf

below a critical value oscillate themselves as the cylinder vibrates, sometimes

increasing the amplitude of cylinder oscillation higher than that for a plain

cylinder. On the other hand, if τf is above a limiting threshold the suppressors

may not rotate and an undesired galloping response can be initiated.

9.4 Further work

We can think of a vast list of further investigations originating from the present

study; surely more will appear in the future. But among them, the most significant

must be the development of an unsteady model to represent the phenomenon;

therefore, we start with this one.
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9.4.1 Development of an improved, unsteady model for

WIV

We have shown that WIV had been referred to as a type of galloping mostly because

the typical response presents a build up of amplitude for higher reduced velocities.

But now we know that the response is increasing due to the wake stiffness effect as a

function of Reynolds number. We argue that quasi-steady assumptions, commonly

employed by the classical galloping theory, would not fit the WIV phenomenon as

we now understand it. For that reason we have been insisting on a dissociation of

WIV from the classical galloping idea.

No matter how good the wake stiffness approach was in regards to the frequency

of oscillation, the displacement response is somewhat more complex and is not fully

captured by this first approximation. We believe this is due to the simplicity in

modelling the term Ĉy sinφ. A simple harmonic model as the one we have employed

cannot account for nonlinear effects that might be important to the system. It

will not be able, for example, to predict the asymptotic effect that is limiting the

displacement.

The complex interaction between body and wake causes |∂Cy| and Ĉy sinφ to

be coupled in such a way that we cannot simply analyse them independently. Since

we believe both wake-stiffness and vortex-impulse terms originate in the same fluid

mechanic phenomenon, we are not able to uncouple and isolate their effects into

linearly independent terms. An improved, nonlinear model is necessary to account

for more complex fluid-dynamic phenomena that we have identified to exist but were

not considered in our model.

9.4.2 Effect of mass and damping

According to the analysis presented in Chapter 7, the WIV response should

be inversely proportional to the product m∗ζ. This is a rather straightforward

conclusion that finds support in the analyses of other types of FIV mechanisms as

well. Bokaian & Geoola (1984) and Zdravkovich & Medeiros (1991) showed that

damping has a significant effect on the WIV response. By varying ζ they were able
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to control the overlapping of the VIV and WIV regimes.

We have also preformed preliminary tests with varying m∗ and ζ, but they were

not presented in this thesis for brevity. We found, as expected, that the amplitude

of response is more sensitive to variations in ζ than to variations in m∗. However,

further investigation is required to completely understand this dependency.

9.4.3 Retro lock-in

While performing experiments at x0/D = 3.0 we noticed that the lift force on the

upstream cylinder had some correlation with the oscillations of the second body. We

knew that, at smaller separations, pressure fluctuations resulting from the movement

of the downstream cylinder could propagate upstream and interfere with the wake

of the first body. But by placing a hot-film probe in the near wake of the upstream

static cylinder we were able to verify that the vortex shedding of that body was

in fact synchronised by the oscillations of the other. That is, there was a lock-

in phenomenon occurring with the shedding of the upstream cylinder (which was

static) that was induced by the movement of another body placed 3D downstream.

We have called this phenomenon ‘retro lock-in’.

If the separation is increased, the oscillations of the downstream cylinder will

not feedback on the shedding of the upstream body and it will shed vortices as

an isolated cylinder. Other than that, if the upstream body is close enough but

does not show significant oscillations, the shear layers from the upstream cylinder

may reattach and a developed wake will never be formed in the gap. Therefore,

retro lock-in is only verified for certain separations that allow some communication

between the oscillations of the downstream cylinder and the shedding mechanism

of the upstream, while still allowing for a developed wake to be formed. In our

experiments, it was only observed for separations between x0/D = 2.5 and 3.0 when

the second body had considerable amplitude of oscillation.
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9.4.4 Increase the number of degrees of freedom

Now that we have a better understanding of the WIV excitation mechanism, we are

ready to increase the number of degrees of freedom and investigate their effect on

the response.

The first step would be to allow the downstream cylinder to vibrate in 2-dof while

holding the upstream one static. We have performed preliminary WIV experiments

employing the 2-dof rig described in the present work, but the discussion of these

results is out of the scope of this text. It is already known that a downstream cylinder

with 2-dof may respond with the wake-flutter mechanism described in Chapter 3.

If the second cylinder is placed, say, at the same x0/D = 4.0 that we have been

investigating the response could be an overlapping of VIV, WIV and wake-flutter.

Another possibility would be to allow both cylinders to oscillate, first in 1-dof

and later in 2-dof, in order to show that the suppressing effect observed by Assi

(2005) is related to these condition. If the cylinders are mounted in 2-dof rigs we

would be able to evaluate potential conditions for clashing.

In a third step we would investigate the interaction between two flexible cylinders.

In that case we would be closer to the real riser condition, but the great number of

variables in the problem would make it almost impossible to understand any physical

mechanism other than simply acquiring overall responses.

9.4.5 Optimisation of suppression devices

The present study proved that suppressors based on parallel plates have great

potential to reduce drag and suppress VIV and WIV of offshore structures. Future

work would concentrate on optimising the devices with respect to overall length and

geometry. We already know that an effective splitter plate can be shorter than 1D,

but we also would like to investigate the optimal length for parallel plates as far as

suppression and drag reduction are concerned. In addition, a detailed parametric

investigation on the effects of rotational inertia and torsional resistance should be

carried out for the splitter plate and each of the specific solutions.

And finally, the use of two-dimensional control plates represents only one family
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of devices found to suppress VIV and WIV. It is possible that other devices like

shrouds and guiding vanes are capable of suppressing WIV as well.
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Appendix A

Spectrum plots

This appendix presents a brief explanation about how the power spectral density

(PSD) contour plots have been generated in the present work.

We take the example of the lift force measured on the downstream cylinder. If

we fix a certain flow speed and acquire the lift signal for a large number of cycles,

we will end up with a typical PSD plot of power versus frequency. If we repeat this

process for a number of flow speeds, stacking graphs along a reduced velocity axis,

we will end up with the three-dimensional plot presented in Fig. A.1(a). If all the

frequency peaks had more or less a similar power magnitude, we would be able to

identify branches of dominant frequency along the reduced velocity axis. If we look

at Fig. A.1(a) from the top, and express the peak height only by colour, we would

see the contour plot presented in Fig. A.1(b). Because the peaks at higher reduced

velocity have more energy content than the peaks at lower reduced velocities, they

overwhelm the colour scale and we are not able to make sense of the frequency

branches for lower reduced velocities.

Now, we can repeat the same process but normalising each individual PSD plot

by its maximum power value; i.e. instead of plotting power on the vertical axis

we plot a normalised power (PSD∗) that varies between 0 and 1 for each reduced

velocity. This would make all reduced velocities have at least one dominant peak

at PSD∗ = 1 in red, as shown in Fig. A.2(a). Hence we would be able to follow the

development of frequency branches along the reduced velocity axis as represented



(a) (b)

Fig. A.1: Examples of PSD plots.

(a) (b)

Fig. A.2: Examples of normalised PSD∗. All similar plots in the present work have been generated
like this one.
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in Fig. A.2(b) without losing information for lower reduced velocities.

All plots presented in the present work have been generated as Fig. A.2(b).

However, this normalisation brings one counter effect: we are not able to compare

power intensity between one flow speed and another, but only in a vertical line across

the reduced velocity axis.
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